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Abstract. A comparative study of two numerical formulations for high-order reconstruction on unstructured grids is
performed. The Weighted Essentially Non-Oscillatory (WENO) and the Spectral Volume (SV) methods are considered for
the spatial discretization of the 2-D Euler equations. Solution discontinuities pose a major challenge for research on high-
order methods since reconstruction requires special treatment to preserve high order of accuracy and high resolution. The
test cases include problems with strong shock waves and other discontinuities which provide a comparative assessment
of the resolution capability of the tested schemes for typical aerospace flows. A novel formulation is presented that uses
both the WENO and SV discretization methods for reconstruction, depending on the flow characteristics, to provide a
continuous high-order solution field, regardless of discontinuities. The results obtained show that it is possible to couple
these methods and drastically reduce the computational time and improve the overall quality of the solution. Furthermore,
the results provide qualitative data on the proposed method and the results of the present effort could provide valuable
guidelines for future developments regarding high-order methods for unstructured meshes.
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1. INTRODUCTION

High-order reconstruction methods capable of handling unstructured grids are highly sought in computational fluid
dynamics since solving several real world problems requires mesh discretizations over complex geometries. In recent
years, several efforts have been made by the CFD group of Instituto de Aeronáutica e Espaço (DCTA/IAE) for the devel-
opment of high-order unstructured grid schemes, such as the Weighted Essentially Non-Oscillatory (WENO) and Spectral
Volume (SV) methods, for the solution of aerodynamic flows (Wolf and Azevedo, 2007).

The computational solver uses the 2-D Euler formulation in a cell centered finite volume context for unstructured
meshes, with an implicit scheme for time integration. The CFD tools developed in the group and used in the present work
have been verified and validated previously (Breviglieri et al., 2010). Furthermore, detailed analyses of the actual order
of accuracy for the various schemes can also be found in the cited references.

In the current paper, literature test cases are addressed to provide data regarding computational efficiency, accuracy
and flow feature resolution of the SV and WENO methods. Among these are the unsteady supersonic internal flow, known
as the forward-facing step problem (Woodward and Colella, 1984) and the RAE 2822 transonic airfoil simulation. The
comparative simulations of the SV and WENO methods are third-order accurate. The current research is focused on the
shock-capturing and high-order accuracy capabilities of the discretization schemes.

Furthermore, a hybrid method, comprising the SV reconstruction on smooth regions and WENO reconstruction on
discontinuous regions is derived in this research as a proposition to improve the quality of the solution, compared with
regular limiter formulations, and reduce the computational time required by the WENO method. In other words, the
WENO reconstruction is used in regions in which the SV method would require a limiter. Hence, no limiter is actually
implemented in the SV formulation, but the hybrid methodology switches to a WENO scheme in the regions in which the
limiter was supposed to be active. A comparative analysis of the results for the flow cases addressed in this paper should
be helpful in devising guidelines for future developments regarding high-order methods for unstructured meshes.
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2. Spatial Discretization

The SV and WENO method formulation used in this research follows the work in Wolf and Azevedo (2007) and
Breviglieri et al. (2010) for a two-dimensional unstructured framework. Both schemes use discontinuous polynomials
as basis function to achieve high-order reconstruction, and, similar to second or higher order finite volume methods, it
reduces to first-order in the worst case. A Riemann solver is used to compute numerical fluxes at cells interfaces, which
provides the numerical dissipation and physical propagation characteristics to the methods.

This section presents the hybrid approach to perform limited reconstruction for the high-order method considered in
this research. In the context of the Euler formulation, it is necessary to limit some reconstructed properties at flux integra-
tion points in order to maintain stability and convergence of the simulation, if the flow solution contains discontinuities.
The present limiting technique involves two stages. First, the solver must find out and mark “troubled cells” which are,
in the second stage, limited. The limiter technique here proposed employs the 3rd-order SV method globally on the mesh
and the 3rd-order WENO reconstruction procedure to the troubled cells. It is expected that, across discontinuities, the
WENO method would be able to find a smooth stencil for polynomial reconstruction, which would retain the high-order
aspect of the reconstruction.

Several markers, or sensors, were developed and employed for unstructured meshes over the past decades. For an in-
depth review, the interested reader is referred to Qiu and Shu (2006). The limiter marker used in the present work is termed
Accuracy-Preserving TVD (AP-TVD) marker. Once the mesh element is confirmed as a troubled cell, its polynomial, can
no longer be used in any flux integration point, because the property function is no longer smooth within such element.
Hence, it is of utmost importance to limit as few elements as possible. To that end, the marker is designed to check for
the flux integration points in each cell and mark those that do not satisfy the monotonicity criterion. The polynomial of
a troubled cell is, then, replaced by a new polynomial, obtained with the WENO method. It should be pointed out that,
for the quadratic reconstruction, the WENO method must cope with different cell topology, resulting from the SV method
cells partitioning procedure. Moreover, the underlying program logic and data structure have to be carefully designed to
account for the hybrid nature of the approach. The hybrid method must reduce the computational time while maintaining
high-order accuracy and lower resource usage. Therefore, a large amount of time has been spent on fine-tuning the solver
structure to account for both schemes operating at once.

For the quadratic reconstruction, the limiting process can be summarized in the following stages:

1. For a given spectral volume, SVi, compute the minimum and maximum cell averages using a local stencil which
includes its node neighbors, i.e.,

Qmin,i = min

(
Qi , min

16r6nb
Qr

)
Qmax,i = max

(
Qi , max

16r6nb
Qr

) (1)

2. The i-th cell is considered as a possible troubled cell if

pi(xrq, yrq) > 1.001Qmax,i or pi(xrq, yrq) < 0.999Qmin,i . (2)

The 1.001 and 0.999 constants are not problem dependent. They are simply used to overcome machine error, when
comparing two real numbers, and to avoid the trivial case of when the solution is constant in the neighborhood of
the spectral volume considered.

3. Recompute the properties at the quadrature points of the i-th cell with the WENO polynomial.

The limited reconstruction is based on primitive variables {p, u, v, ei}T . Here, p is the pressure, u and v are the
Cartesian velocity components, and ei is the internal energy. Once these properties are available from the limited recon-
struction, the vector of conserved variables is easily obtained to resume the numerical flux integration. Such formulation
does not require any input from the user and is not derived for a particular problem.

3. RESULTS

The results presented here attempt to verify the stability and resolution of the high-order methods for aeronautical
applications. For the presented results, density is made dimensionless with respect to the free stream condition, ρ = ρ

ρ∞
,

and pressure is made dimensionless with respect to the density times the speed of sound squared, p = p
ρ∞c2∞

. Moreover,
the Lmax norm of the residue for the mass equation is used for the convergence history plots. All test cases are executed
on an Intel Xeon 2.6 GHz 64-bit Linux workstation. The solver is serial, Fortran 90 code with dynamic memory allocation
compiled with optimized settings for the Intel compiler. The results are computed with the implicit matrix-free method
with a CFL value of 1× 106, unless otherwise stated.
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3.1 RAE 2822 Airfoil

The transonic flow over a RAE 2822 airfoil with 2.31 deg. angle-of-attack and free stream Mach number, M∞ =
0.729, is simulated with the 2nd-order MUSCL scheme and 3rd-order SV with different limiter formulations. The min-
mod, hierarchical moment limiter (Breviglieri et al., 2010) and WENO formulations are considered in this test case. The
computational mesh has 5378 cells, of which 132 elements lie on the airfoil surface, as necessary to properly describe the
airfoil geometry, especially on the leading edge. This mesh is shown in Fig. 1.

(a) (b)

Figure 1. Computational domain and RAE 2822 airfoil mesh detail.

Figure 2 shows Mach contours around the airfoil for the various methods considered. The figures share the same color
map. The hybrid scheme presents a sharp shock resolution. However, when one considers the residual history in Fig. 3,
the oscillatory behavior of the WENO method is observed for the hybrid scheme. The figure presents the residue of the
mass equation normalized by the residue of the first iteration. The 3rd-order SV minmod method also halts convergence
but provides a C` value closer to the expected one, around 0.8, than the hybrid scheme. This difference might be due
to the fact that, for the minmod simulation, the residual dropped 3 orders of magnitude while the hybrid scheme halts
convergence at around half of that value. A similar behavior is observed for the hierarchical limiter.

TheCp distribution is presented in Fig. 4 for the various numerical methods, along with experimental data. Clearly, the
experimental data shows a smooth transonic shock, due to shock wave–boundary layer interaction, which is an important
phenomenon for such supercritical airfoils. The present computations cannot reproduce such physics, since the Euler
equations are used. The hybrid method presents similar results compared to the hierarchical limiter formulation, regarding
shock position and strength, as well as the undershoot, although it is closer to the experimental data in the suction region.
With regard to the limiter formulation of the hybrid method, it is active only in the discontinuity region, as shown in Fig. 5.
The minmod limiter is active all around the region of interest, while, in the hybrid scheme, the active limiter is restricted
to the shock region. Hence, the minmod limiter renders the solution 1st-order accurate at such cells, whereas the hybrid
scheme, by using the WENO reconstruction, should be able to retain the high-order accuracy of the original method.

The benchmark data is presented in Table 1. The time column displays the required wall-clock time toC` convergence,
normalized by the hybrid method wall-clock time, at around 6000 iterations.The memory column shows the required
memory for each method normalized by the most expensive scheme, namely the 3rd-order hybrid SV method. The authors
emphasize that these 6000 iterations actually took around 50 wall-clock minutes in the reference computer described
earlier. One can observe, in Fig. 3, that the C` curve for the hybrid test case shows a convergent behavior. The MUSCL
scheme is extremely cheap compared to the hybrid method. However, one must consider that it is, at most, second-order
accurate. Given the fact that the MUSCL scheme is commonly employed in industry, such benchmark provides insights
into the high-order schemes overall accuracy and computational cost. The SV with minmod limiter is also cheaper than
the hybrid approach with nearly the same memory usage, as well as the hierarchical limiter.
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(a) 3rd-order SV solution with minmod limiter. (b) 3rd-order SV solution with hierarchical moment limiter.

(c) 3rd-order SV solution with WENO method as limiter.

Figure 2. Mach contours for RAE 2822 airfoil at M∞ = 0.729 and α = 2.31 deg.

(a) 3rd-order SV scheme with minmod limiter. (b) 3rd-order SV scheme with WENO as limiter.

Figure 3. Residue history for the RAE 2822 airfoil simulations at M∞ = 0.729 and α = 2.31 deg.
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(a) (b)

Figure 4. Experimental and numerical Cp with detailed shock region for the RAE 2822 airfoil at M∞ = 0.729 and
α = 2.31 deg.

(a) 3rd-order SV troubled cells in red for the minmod limiter. (b) 3rd-order SV troubled cells in red with WENO as limiter.

Figure 5. Limited cells for pressure reconstruction for the RAE 2822 airfoil at M∞ = 0.729 and α = 2.31 deg. Blue
contour represent unlimited reconstruction.

Table 1. RAE 2822 Airfoil Benchmark.

Method Order Limiter time memory
MUSCL 2 minmod 0.10 0.58

SV 3 minmod 0.22 0.98
SV 3 Hierarchical 0.25 0.98
SV 3 WENO 1.0 1.0
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3.2 Forward-Facing Step Problem

The forward-facing step test case is designed to resolve unsteady, complex oblique shock reflections, pertinent to
supersonic variable-geometry jet engine intakes. Due to computational constraints faced by Emery (1968), the test case
was designed to be numerically simple to set up. The initial conditions are uniform throughout the domain, and the
inlet boundary condition is supersonic. Such setup is actually difficult to perform experimentally, due to the unrealistic
combination of initial and boundary conditions. However, quantitative results are available for a range of numerical
methods in Woodward and Colella (1984), which makes this a good test case for validating the capabilities of any flow
solver, independently of the numerical method used, and, hence, for the present study.

The artificial nature of the test case setup helps to evaluate the robustness of the spatial discretization algorithm
combined with the limiter technique. Due to the strong shock reflection at the lower face of the step during the first few
iterations, it is difficult to maintain positivity of pressure and density using various numerical schemes. Furthermore,
the edge of the forward step is a singular point of the Prandtl-Meyer expansion fan generated by the flow over the step.
The continuity and momentum equations can disobey the second law of thermodynamics through an expansion fan. This
introduces numerical difficulty in the form of a non-physical expansion shock, which at high Mach numbers and small
cell sizes can yield negative pressures and densities in the solver.

The 2-D configuration is 3 dimensionless length unit long and 1 unit wide, with a step of 0.2 unit high located at
0.6 length units from the configuration inlet. The inflow and outflow boundary conditions are both supersonic, so the
solver does not have to account for waves leaving the domain at the entrance boundary, or entering the domain at the
exit boundary. An uniform Mach number of 3.0 is set as inflow at t = 0 dimensionless time units. The simulation is
unsteady and a constant ∆t value of 1 × 10−4 was used. The mesh has 4536 triangular cells and is presented in Fig. 6.
This simulation considered the 3rd-order SV and WENO methods. Moreover, the SV scheme employed different limiter
formulations, namely the minmod and the hybrid SV/WENO approach here proposed.

Figure 6. Computational mesh for the forward facing step simulation.

The more interesting structures of the flow develop at time equal to t = 4.0 dimensionless time units. At such
time instant, a detached shock evolves to a lambda shock that reflects in the upper surface of the channel. A contact
discontinuity is created past the lambda shock and both the reflected shock and the contact discontinuity move downstream
along the channel. The reflected shock is again reflected at the lower wall as well as near the end of the channel. The
contact discontinuity interacts with the shock that reflected in the lower wall. This interaction occurs in the region near
the end of the channel, just upstream of the last reflection of the shock. At the corner region, there is also a weak oblique
shock wave that ends the expansion region due to a Prandtl-Meyer expansion fan. This weak shock interacts with the first
reflected shock near the lower wall of the channel. This leads typically to a flow structure that resembles a non-physical
shock-boundary layer interaction in the region where the second shock reflection occurs. The solution in this region is
very dependent on the treatment applied to the corner of the step. In the present work, no special treatment is applied to
the corner of the step, contrary to the original reference of Woodward and Colella (1984). One can see that the results here
presented are similar to those presented in Abgrall (1994) and Sonar (1997), where, as in this work, no special treatment
is applied to the corner of the step. The use of a solution limiter formulation is required for the SV method to preserve the
positivity of the reconstruction.

Results at time t = 4.0 are shown in Figs. 7 and 8, in terms of density and Mach number contours, for the SV scheme.
As the reader can observe, the SV method solution with minmod limiter tends to smooth out the shock waves and presents
an unrealistic density gradient at the step face region. Moreover, the normal shock profile at the upper wall is disturbed.
The hybrid method, on the other hand, does not produce such disturbances in the flow field and it has sharper shock
resolutions overall compared to the minmod solution. One important aspect of the hybrid solution is that the first shock
reflection after the step face does not build up to a lambda-shock structure, as is common with highly-dissipative schemes,
as observed in Breviglieri and Azevedo (2012).
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(a) 3rd-order SV solution with minmod limiter.

(b) 3rd-order SV solution with WENO method as limiter.

Figure 7. Density contours for the forward facing step problem.

(a) 3rd-order SV solution with minmod limiter.

(b) 3rd-order SV solution with WENO method as limiter.

Figure 8. Mach number contours for the forward facing step problem.
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The poor resolution of the minmod limiter can be explained as in the previous airfoil cases that is, most of the cells
are reconstructed with 1st-order accuracy, as Fig. 9 indicate. Note that most of the domain is limited for the minmod case,
whereas the hybrid scheme restricts the limited reconstruction to those cells in the discontinuity regions. Moreover, even
such cells are reconstructed with the WENO scheme, which seeks for the smoothest polynomial away from discontinuities
to preserve the high-order aspect of the method.

(a) 3rd-order SV troubled cells in red for the minmod limiter.

(b) 3rd-order SV troubled cells in red with WENO as limiter.

Figure 9. Limited cells for pressure reconstruction, at the last iteration, for the forward facing step simulation. Blue
contour represent unlimited reconstruction.

One often overlooked aspect of high-order methods regards the flow field visualization. The previous figures present
the results on the initial spectral volume (SV) mesh, as in Fig. 6. However, to fully exploit the high-order resolution
of these schemes, it is important to investigate the inner-cell property distribution. To that end, the authors developed a
visualization tool which uses the SV and WENO polynomials to map the high-order solution to a finer-grained mesh built
specifically for visualization purposes. Such tool allows one to compare quantitatively the flow property distributions ob-
tained with different methods. The visualization mesh is composed of refined cells obtained with successive triangulation
of the original mesh elements. Since the solution polynomials are continuous across its element boundaries, it can be
used to obtain the properties values within such limits. For those cells that lie on a limited and discontinuous region, the
WENO polynomial is used instead. Figures 10 and 11 present such visualization for density and Mach number contours,
now for the 3rd-order WENO and hybrid methods. The figures have the same color map range. One can observe in much
more detail the shock resolution and reflection along the domain. The WENO density solution shows a similar behavior
to the minmod solution on the step face region. One can also note that the WENO reconstruction produces oscillations
right after the shock waves, whereas they tend to propagate further into the domain for the hybrid scheme. Although the
solutions are not effectively the same, both schemes are able to capture the relevant physics expected for this problem.
The difference lies on the computational effort to obtain such solutions using the WENO and hybrid method. The WENO
scheme is over ten times more expensive than the hybrid method. Details are given in Table 2.

ISSN 2176-5480

77



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

(a) 3rd-order WENO solution.

(b) 3rd-order SV solution with WENO as limiter.

Figure 10. Density contours on fine mesh for visualization.

(a) 3rd-order SV WENO solution.

(b) 3rd-order SV solution with WENO as limiter.

Figure 11. Mach number contours on fine mesh for visualization.
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The benchmark data is presented in Table 2. The time column displays the required wall-clock time to reach t = 4.0
time units of the simulation, again normalized by the hybrid method computational time. The memory column shows the
required memory for each method normalized by the most expensive one, which, in this case is also the 3rd-order hybrid
SV method. Such computation actually took around 6.7 wall-clock hours in the reference computer described earlier.
The MUSCL scheme is extremely cheap compared to the hybrid method. However, as also previously discussed, one
must consider that it is at most second-order accurate and, once more, provides a reference to compare with low-order
CFD applications typically used in industry. The SV with minmod limiter is also cheaper than the hybrid approach, with
nearly the same memory usage, but it severely degrades the quality of the solution. Furthermore, as Fig. 9 indicates, most
of the domain is 1st-order accurate due to the order reduction associated with the active limiter. The WENO simulation
results, however, have similar quality as that provided by the hybrid method, but at a much higher computational costs.
As indicated in Table 2, the computational costs of the WENO calculation is about 10 times larger than that of the hybrid
scheme simulation, due to the search procedure of WENO scheme. At each time-step, a reconstruction stencil is built for
every cell in the domain. The hybrid method uses the fixed stencil for polynomial reconstruction of the SV for most of the
domain, and only on the limited cells, the WENO search algorithm is employed. This also results in a reduced memory
requirement, as indicated in the Table below.

Table 2. Forward Facing Step Benchmark.

Method Order Limiter time memory
MUSCL 2 minmod 0.03 0.64

SV 3 minmod 0.56 1.02
WENO 3 - 10.5 4.57

SV 3 WENO 1.0 1.0

4. CONCLUSIONS

The present research has presented results with the comparison of high-order WENO and SV methods. Considering
the calculations performed so far, each method has characteristics that excel over the other scheme. The WENO search
algorithms, for instance, represent a real challenge for computational efficiency. On the other hand, WENO methods
require no limiter technique for dealing with the strong shocks that appear in supersonic and hypersonic flows. The
SV method uses a simplified reconstruction process, but it requires a limiter formulation in order to be stable for the
same applications. The limiting process typically yields a reduction in the order of accuracy near discontinuities and
considerable cost increases.

A hybrid method is proposed to combine the advantages of both methods into a unified framework that can employ an
implicit time march scheme on unstructured meshes. The possibility of high-order uniformity over the domain typical of
WENO solutions along with the efficiency and robustness of the SV method is explored in this paper. The results have
shown that it is possible to couple these methods and drastically reduce the computational time and improve the overall
quality of the solution. Furthermore, the results presented in this paper provide qualitative data on the proposed method
and draw directions to further investigate some of its shortcomings. For instance, it is clear from the present results that
some work is needed in order to improve the solution smoothness with the hybrid scheme. Moreover, convergence rate
improvements, extension to curved boundary elements and formal order measurement studies are tasks that still remain
to be performed. In any event, the current results are encouraging, and they indicate that such hybrid approach might be
applied to 4th- and possibly higher-order methods.

5. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the partial support for this research provided by Conselho Nacional de Desen-
volvimento Científico e Tecnológico, CNPq, under the Research Grants No. 312064/2006-3 and No. 471592/2011-0. The
first author acknowledges the support provided by the research scholarship from Programa Institucional de Bolsas de
Iniciação Científica, PIBIC, of Instituto Tecnológico de Aeronáutica, ITA. This work is also supported by Fundação Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, through a Ph.D. Scholarship for the second author.
The authors are also indebted to the partial financial support received from Fundação de Amparo à Pesquisa do Estado de
São Paulo, FAPESP, under Grants No. 2011/12493-6 and No. 2013/07375-0.

ISSN 2176-5480

79



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

6. REFERENCES

Abgrall, R., 1994. “On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation”.
Journal of Computational Physics, Vol. 114, pp. 45–58.

Breviglieri, C. and Azevedo, J.L.F., 2012. “Unsteady aerodynamic applications using high-order unstructured grid meth-
ods”. In AIAA Paper No. 2012-0701, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition. Nashville, TN.

Breviglieri, C., Azevedo, J.L.F., Basso, E. and Souza, M.A.F., 2010. “Implicit high-order spectral finite volume method
for inviscid compressible flows”. AIAA Journal, Vol. 48, No. 10, pp. 2365–2376.

Emery, A., 1968. “An evaluation of several differencing methods for inviscid fluid flow problems”. Journal of Computa-
tional Physics, Vol. 2, pp. 306–331.

Qiu, J. and Shu, C.W., 2006. “A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods
using weighted essentially nonoscillatory limiters”. SIAM J. Sci. Comput., Vol. 27, No. 3, pp. 995–1013.

Sonar, T., 1997. “On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conser-
vation laws on general triangulations: Polynomial recovery, accuracy and stencil selection”. Comput. Methods Appl.
Mech. Engr., Vol. 140, No. 2, pp. 157–181.

Wolf, W.R. and Azevedo, J.L.F., 2007. “High-order ENO and WENO schemes for unstructured grids”. Int. J. Numer.
Meth. Fluids, Vol. 55, No. 10, pp. 917–943.

Woodward, P. and Colella, P., 1984. “The numerical simulation of two-dimensional fluid flow with strong shocks”.
Journal of Computational Physics, Vol. 54, pp. 115–173.

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

ISSN 2176-5480

80


	INTRODUCTION
	Spatial Discretization
	RESULTS
	RAE 2822 Airfoil
	Forward-Facing Step Problem

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	RESPONSIBILITY NOTICE



