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Abstract. A semi-empirical model aimed at identifying an optimal tube spacing, s/(2b), in a bank tube heat exchanger is
presented in this article. The pumping power is computed from estimates of the mass flow rate and pressure drop experi-
enced by the fluid flowing over the tubes while accounting for space constraints, by making use of geometrical character-
istics, mass conservation and simple semi-empirical expressions for the pressure drop and friction factor. Pumping power
reductions of up to one order of magnitude are obtained when the tube spacing is varied in the range 0.25 < s/(2b) < 3,
highlighting the importance of searching for the optimal spacing if minimizing pumping power is of concern.
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1. INTRODUCTION

Bank tube heat exchangers are widely used in the heating ventilation, air conditioning and refrigeration (HVAC-R)
industries as well as in power generation systems. A large share of the total energy consumption worldwide is associated
with HVAC-R systems. This fact, has in part motivated investigations on the heat transfer enhancement and pumping
power minimization in bank tube heat exchangers.

Bejan et al. (1995) conducted an study of the optimal spacing between cylinders in cross-flow forced convection
in which the optimal cylinder-to-cylinder spacing was found by maximizing the overall thermal conductance. Recent
studies have shown numerically and experimentally that the finned elliptical tube arrangements have better heat transfer
performance than the circular finned arrangement (Mainardes et al. (2007), Matos et al. (2004) )Mainardes et al. (2012)
conducted an experimental study of the pumping power minimization for staggered finned circular and elliptical-tube heat
exchangers.

Event though there is sufficient experimental and computational evidence that the pumping power required to flow
the fluid over the tube arrangement can be minimized by properly selecting the tube-to-tube spacing. There is a need
for simple analytical tools to extend available scale analysis studies (Mainardes et al. (2012)) in order to produce more
refined, yet quick, estimates of near optimal arrangements.

The objective of this study is to present a simple methodology to estimate the optimal tube spacing in a bank tube heat
exchanger.

2. THEORY

A typical bank tube heat exchanger with a regular (non-staggered) configuration is depicted in Figure 1. The heat
exchanger occupies a volume, H × W × L, which is frequently constrained due to space limitations. An important
engineering problem consists of minimizing the pumping power under fixed total volume. The pumping power is defined
as follows:
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Ẇ =
ṁ∆p
ρ

(1)

where ṁ is the total mass flow rate (kgs−1) entering the heat exchanger, ∆p the pressure drop and ρ the density.

Figure 1. Top: Tube bank heat exchanger with regular (non-staggered). Bottom: three configurations with different ratios
S/(2b)

On the bank side (outside the tubes), an elemental channel is defined as the sum of all unit cells in direction z (Fig. 1).
Therefore, the total mass flow rate entering the heat exchanger on the bank side is given by the product between the heat
exchanger resulting number of elemental channels, Nec, by the mass flow rate through one elemental channel, ṁec , as
follows:

ṁ = Necṁec = Necρu∞ [(S + 2b) /2]W = Nec

(
S

2b
+ 1
)
ρu∞bW (2)

u∞ is the free stream velocity entering the heat exchanger. The dimensionless pressure drop is given by,

∆p̃ = ∆p/
(
ρu2
∞
)

(3)

One possible expression to compute the pressure drop is Zukauskas (1987),

∆p = Nrχ

(
ρu2

max

2

)
fk (4)

where Nr is the number of rows, χ = 1 for configurations in which the spacing between columns is equal to the spacing
between rows,and fk represents a friction coefficient.

The maximum velocity can be related to u∞ by,

umax =
S + 2b
S

u∞ (5)
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Making the dimensionless pressure drop on the bank side,

∆p̃ = Nr
fk

2

(
S
2b + 1

S
2b

)2

(6)

Incorporating Zakuskas expression for the pressure drop, the pumping power in the bank side, in a regular tube
arrangement equal number of rows and columns, is given by,

Ẇ = Nt

(
S

2b
+ 1
)( S

2b + 1
S
2b

)2

ρu3
∞fkWb (7)

Thus a dimensionless pumping power for the bank side can be written as follows:

W̃ =
Ẇ

Ntρu3
∞bW

=
(

1 +
S

2b

)
∆p̃k =

(
S

2b
+ 1
)( S

2b + 1
S
2b

)2

fk (8)

3. Results and Discussion

For a constant friction factor, fk, it is possible to find the spacing that minimizes the pumping power analytically by
taking the derivative of the pumping power (Eq. 8) with repespect to s/(2b) and solving ∂W̃/∂(s/(2b)) = 0. By doing
this, we obtain an optimal spacing, (s/(2b))opt = 2.

Figure 2. Pumping power as a function of tube spacing s/(2b) - constant fk

Variations in the friction factor, fk, associated with the Reynolds number and the tube spacing in the range 0.25 <
s/(2b) < 1.5 can obtained from Zukauskas (1987), where the friction factor is reported graphically as a function of the
spacing, s/2b, and the Reynolds number based on the tube diameter and the maximum velocity umax. Since the free
stream velocity u∞ is being used in the present study, we have reploted Zakuskas plot for the friction factor using the
Reynolds number based on tube diameter and and the free stream velocity, u∞. The result is shown in Figure (3).

Our group has conducted experiments with related heat exchangers (finned staggered tube arrangements) using Reynolds
numbers of 2650, 5300, 7950 and 10600 (Mainardes et al. (2012)). Notice that the heat exchangers under study here are
not finned and are aligned instead of staggered. In spite of the difference, we select the same Reynolds numbers values
for the analysis here. Markers in Figure 4 correspond to readings from Figure 3 and the trend dashed lines, correspond to
a curve fit for the values in the domain 0.25 < s/(2b) < 1.5, covered by Fig. 3.

fk can be properly correlated in the range 0.25 < s/(2b) < 1.5 and 2650 < Re2b,u∞ < 10600 by an expression of
the form,
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Figure 3. Friction factor for tube bank heat exchanger with regular (non-staggered) configuration for different ratios
S/(2b)

Figure 4. Effect of Reynolds and tube spacing on the friction factor used in Eq. 4

fk = −B1 ln
( s

2b

)
+B2 (9)

where the constants B1 and B2 are reported in Table 1.
In order to explore the domain of s/(2b) larger than 1.5, we extrapolate the value of fk taking it as a constant (dotted

line in Fig. 4). The constant value for fk for s/(2b) larger than 1.5, could be reasoned as follows: when the tubes are far
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Table 1. Interpolation constants for Eq. 9.

Re2b,u∞ B1 B2

2650 -0.108 0.2315
5300 -0.082 0.2235
7950 -0.072 0.2179

10600 -0.067 0.2138

apart, the effects of one tube in the flow, do not extend to infinity for a non-zero Reynolds number (Panton (2006)). If the
tubes are far enough apart, they will behave individually as a single tube. For flow over a single cylinder, the pumping
power required to overcome the drag can be computed as the product of the drag force, FD and the free stream velocity,
and the drag force can be estimated from the drag coefficient, CD,

Ẇ = FDu∞ = CD
1
2
ρu2
∞(2b)W (10)

Then, for Nt non-interacting cylinders we would have,

W̃ =
Ẇ

Ntρu3
∞bW

= CD (11)

We can use Eq. 11 to estimate a value for fk, to be used in Eq. 8:

W̃ =
Ẇ

Ntρu3
∞bW

= CD =
(
S

2b
+ 1
)( S

2b + 1
S
2b

)2

fk (12)

In the range 1 < s/(2b) < 10, the group
(

S
2b + 1

) ( S
2b +1

S
2b

)2

is of order 10, in fact, 8 <
(

S
2b + 1

) ( S
2b +1

S
2b

)2

< 13.18,
then we can argue that,

fk ∼
CD

10
for1 < s/(2b) < 10 (13)

The drag coefficient for flow over a cylinder is illustrated in Figure 5, which shows that in the range 103 < Re < 104

the drag coefficientCD ∼ 1, which leads to a constant fk ∼ 1/10. This result agrees well with the extrapolation suggested
by the dashed lines in Figure 4.

Figure 5. Drag coefficient for flow over a sphere and a single cylinder in cross flow. Drawn after Bejan (2004)
.

With the Incorporation of the dependence on Reynolds and tube spacing into fk in Eq. 8 it is convenient to re-scale
the dimensionless pumping power, as now the free stream velocity could potentially vary. Defining a reference free steam
velocity, u∗∞, such that Re∗ = Re2b,u∞

(
u∗∞
u∞

)
, then we can track the dimensionless power,
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W̃ ∗ = W̃
Re

Re∗
(14)

Figure 6 illustrates the minimization of pumping power for cases in which the variation of fk with both tube spacing
and Reynolds number are accounted for. It can be observed that the optimal value still lies above s/(2b) = 1.5, where fk

is constant. For this reason, in the range considered here, the incorporation of Eq. 9 does not shift the optimal value of
s/(2b).

Figure 6. Minimization of pumping power, W̃ ∗. We have set Re∗ = 103.
.

4. Conclusions

A simple analysis to study the optimal tube spacing in heat exchangers consisting of a bank of circular tubes has
been presented. The objective is to minimize pumping power under a total volume constraint. The results complement
exiting experimental and computational studies in the sense that they provided a simple semi-empirical approach to
quickly estimate optimal tube spacing. Appropriate dimensionless groups were identified to report the results to allow for
generalization of the results. Specifically, key conclusions of this article are:

• An optimal tube spacing (s/(2b))opt = 2 was found to minimize the pumping power required for the fluid flowing
outside the bank of tubes to flow.

• The optima obtained are sharp, highlighting their importance in actual engineering designs. For the case of constant
fk (Fig. 2), variations in the dimensionless pumping power of an order of magnitude are observed in the range
0.1 < s/(2b) < 10
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