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Abstract. The thermodynamic efficiencies of active and passive regenerative cooling cycles are directly linked to the heat
transfer effectiveness and thermal losses taking place in the regenerator. This paper proposes an optimization method for
regenerators based on the Entropy Generation Minimization (EGM) method. The model consists of the one-dimensional
Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases.
An equation is proposed to determine the entropy generation contributions due to axial heat conduction, fluid friction and
interstitial heat transfer. The influence of parameters such as the mass flow rate, regenerator cross sectional area, housing
aspect ratio, utilization factor and particle diameter was evaluated in the context of Variable Geometry and Fixed Face
Area Performance Evaluation Criteria (PEC). Optimal regenerator configurations were found for each PEC for flow rates
between 50 and 200 kg/h with constraints of regenerator effectiveness equal to 95%.
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1. INTRODUCTION

Regenerators are storage-type heat exchangers where hot and cold fluid streams flow in alternating directions through
a porous matrix, giving rise to intermittent heat transfer between the solid and the fluid. During a hot blow, the fluid at
a higher temperature exchanges heat with the solid phase, warming up the matrix that stores thermal energy from the
fluid phase. In the cold blow, the matrix releases the stored energy as heat, warming up the fluid (Schmidt and Willmott,
1981; Shah and Sekulic, 2003). Regenerators are widely employed in power and cooling gas cycles such as the Stirling,
pulse-tube, thermoacoustic, Gifford-McMahon and Vuillemier cycles. Regenerators that use liquids as a working fluid
are encountered in some magnetic cooling cycles. In these cases, such as in the Brayton magnetic cooling cycle, the
regenerator can be classified as active, since the solid matrix is made of a magnetocaloric material that is heated up or
cooled down (with respect to the ambient temperature) when the regenerator is magnetized or demagnetized adiabatically
(Pecharsky and Gschneidner, 1999).

In active magnetocaloric regenerators, the structure and geometry of the solid matrix are very important for establish-
ing desirable values of temperature span and cycle efficiency. An ideal regenerative matrix geometry is one with large
thermal mass, surface area and thermal conductance, but negligible viscous losses. Due to the sometimes prohibitive man-
ufacturing and processing costs of magnetocaloric materials, it is not always possible to make systematic experimental
evaluations of different geometries of the solid matrix. Nevertheless, experiments with non-magnetic solid matrices may
help in the quantification of the influence of the porous medium geometry on the thermal-hydraulic performance of the
regenerator separately from thermodynamic losses related to magnetic phenomena in the matrix (Trevizoli et al., 2012).

A regenerator can be designed and optimized based on the Entropy Generation Minimization (EGM) method. This
method has been developed to evaluate the thermodynamic performance of thermal systems based on the irreversibilities
due to heat transfer and fluid friction. Bejan (1982, 1996) presented several applications of the method in the context
of heat exchangers and storage systems. A recent review was presented by Awad and Muzychka (2012). Krane (1987)
evaluated the performance of regenerators using gases as working fluids and concluded that the storage and removal
processes need to be analyzed together in order to determine the optimum characteristics of these devices, which were
observed to be quite inneficient (i.e., 70-90% of the available exergy is destroyed by the end of a cycle). Das and Sahoo
(1991) used the EGM method in the thermodynamic optimization of regenerators under single blow operation (i.e., no
time dependence). Their model disregarded axial heat conduction and was valid only for 0 < NTU ≤ 7. An optimum
operating condition was identified in terms of the cycle time and NTU . In a subsequent work, Das and Sahoo (1999)
included the time dependence and the axial conduction in the EGM analysis, thus extending the validity of their model to
more densely packed regenerators operating at higher values of NTU .

de Waele et al. (1997) and Steijaert (1999) applied the EGM method to pulse-tube cryocoolers, taking into consider-
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ation the entropy production in all of the pulse-tube device components (orifice, heat exchangers, regenerator, switching
valves). The model was used to evaluate the thermodynamic performance of a cryocooler prototype. Based on the work of
de Waele et al. (1997), Nam and Jeong (2006) employed the EGM method in the analysis of parallel wire (segmented and
unsegmented) mesh regenerators. They observed a better performance of the unsegmented parallel wire configuration, in
comparison to a screen mesh matrix, due to lower porosity and hence friction factor. However, axial heat conduction was
identified as the main source of irreversibility in the parallel wire case. To overcome this loss, a segmented parallel wire
geometry was used to decrease the axial conduction irreversibility and improve the thermodynamic performance of the
parallel wire regenerator.

The present work proposes a methodology based on the EGM method to design optimal thermal passive regenerators.
The mathematical model is composed of the one-dimensional Brinkman-Forchheimer equation for momentum transfer in
porous media coupled with energy balance equations for the fluid and solid phases. The local instantaneous velocity and
temperature fields are used in the calculation of the local rates of entropy generation per unit volume due to (i) fluid friction,
(ii) axial heat conduction in both media and (iii) interstitial heat transfer with a finite temperature difference between
the phases. Since the ultimate application for the present methodology will involve the optimization of active magnetic
regenerators, the working fluid has been treated as a liquid (aqueous solution). As performed by Pussoli et al. (2012) in the
optimization of peripheral-finned tube recuperators, the total entropy generation, Sg , was used as the objective function in
an optimization procedure which makes used of the Performance Evaluation Criteria (PEC) proposed by Webb and Kim
(2005). In these PEC, the heat exchange device can be optimized according to fixed volume, fixed face area or variable
geometry constraints, which may be useful in the context of regenerator design for both passive and active applications.

2. MATHEMATICAL MODELING

The mathematical model for the thermal-hydraulic analysis of passive regenerators is based on a similar model for
active magnetic regenerators (Trevizoli et al., 2013). The following simplifying assumptions have been adopted: one-
dimensional, laminar and incompressible fluid flow, low porosity porous medium (ε < 0.6) and absence of body forces.

2.1 Fluid Flow Model

The Brinkman-Frochheimer equation for momentum transfer in porous media is given by (Kaviany, 1995; Nield and
Bejan, 2006),

ρf
ε

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ ρf ~f +

µf
ερf
∇2~v − µf

K
~v − cEρf

K1/2
|~v|~v (1)

where the term on the left hand side is the macroscopic inertial force and those on the right hand side are the pore pressure
gradient, the body force, the macroscopic viscous shear stress (or Brinkman viscous term), the microscopic shear stress (or
Darcy term) and the microscopic inertial force (or Ergun inertial term), respectively. Assuming simplifying assumptions
one has,

ρf
ε

(
∂u

∂t

)
= −∂p

∂z
− µf
K
u− cEρf

K1/2
|u|u (2)

where u is the Darcian (superficial) velocity, t is time, p is the pressure, ρf is the fluid density, µf is the fluid kinematic
viscosity, ε is the porosity, z is the axial distance, Dp is the particle diameter and Dh is the regenerator housing hydraulic
diameter based on the cross sectional area. K = ε3Dp

/
180(1− ε)2 is the permeability of the porous media and CE =

0.55(1− 5.5Dp/Dh) is the Ergun constant. In dimensionless form, Eq. 2 is given by,

ReωDa

ε

∂u∗

∂t∗
= −g(t∗)− u∗ − C|u∗|u∗ (3)

where t∗ = ωt, ω = 2πf is the angular frequency and f the cycle frequency. To describe the oscillatory flow in a
regenerator, the pressure gradient was approximated by a time dependent waveform as follows (Zhao and Cheng, 1996,
1998; Oliveira et al., 2012),

−∂p
∂z

= ρfAtg(t∗) (4)

where At is the amplitude of the fluid flow waveform and g(t∗) is a wave function. For a sinusoidal waveform, g(t∗) =
sin(ωt). The dimensionless pressure gradient is given by,
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−∂p
∂z

∣∣∣∗ = g(t∗) (5)

The dimensionless velocity is defined as u∗ = u/uD,max, where uD,max is the maximum Darcy velocity calculated
directly by the classical Darcy Equation for which g(t∗) is by definition equal to unity. Thus,

uD,max = −K
µf

∂p

∂z

∣∣∣
max

= −K
νf
At (6)

where νf is the kinematic viscosity of the fluid. The dimensionless groups in Eq. (3) are the kinetic Reynolds number
Reω = ωd2h/νf , the Darcy number Da = K/d2h and C = CEAtK

1.5/ν2f . dh is the porous media hydraulic diameter
calculated by dh = 4ε/β, where β is the surface area density of the porous medium. It should be noted that, when terms
other than the microscopic shear stress are non-negligible, the actual maximum velocity in the channel (umax) is different
from uD,max, which means that the value of u∗D will be less than unity (Trevizoli et al., 2013).

2.2 Heat Transfer Model

The energy equation for the one-dimensional, laminar, incompressible fluid flow is given by,

ε
∂Tf
∂t

= − h̄β

ρfcp,f
(Tf − Ts)− u

∂Tf
∂z

+ ε
κd

ρfcp,f

∂2Tf
∂z2

+
1

ρfcp,f

∣∣∣∣∣∂p∂z u
∣∣∣∣∣ (7)

where the term on the left is due to inertial (thermal capacity) effects and those on the right are the transversal heat transfer
term calculated using a convective heat transfer coefficient, the longitudinal advection term, the axial conduction term and
the viscous dissipation term. Tf is the fluid temperature, Ts is the solid temperature, h̄ is the convective heat transfer
coefficient, β is the surface area density, cp,f is the fluid heat capacity. κd = kf (1 + Df ) is the thermal conductivity
corrected by the dispersion contribution, where kf is the fluid thermal conduction and Df = 0.75PeR is the longitudinal
thermal dispersion for a packed bed of spheres, for PeR >> 1. PeR = ReRPr is the Peclet number, ReR is the
Reynolds number based on the particle radious and Pr the Prandtl number (Koch and Brady, 1985; Kaviany, 1995). In
dimensionless form, Eq. (7) is given by,

∂θf
∂t∗

= −NuFof (θf − θs)−
Remax
Reωζr

u∗
∂θf
∂z∗

+
1

γdPrReωζ2r

∂2θf
∂z∗2

+
Br

Pr

∣∣∣∣∣f(t∗)u∗

∣∣∣∣∣ (8)

where the dimensionless fluid and solid temperatures are given by θf,s = (Tf,s − TCHEX)/(THHEX − TCHEX), where
TCHEX and THHEX are the cold and hot source temperatures, respectively. u∗ = u/umax (where umax is the actual
maximum velocity in the oscillatory flow field. z∗ = z/L is the dimensionless distance, where L is the length of the
regenerator bed. In Eq. (8), the dimensionless groups are the interstitial Nusselt number, Nu = h̄dh/kf , maximum
velocity Reynolds number, Remax =

(
umax

ε

)(
dh
νf

)
, Brinkman number Br = µfAt

umax

ε

/
kfω(THHEX − TCHEX) and

Fourier number of the fluid phase, Fof =
αf

ω

/(
dh
2

)2
, where αf is the thermal diffusivity of the fluid. The aspect ratio

is defined as ζr = L/dh and the thermal conductivity ratio is given by γd = κd/kf . The interstitial Nusselt number for
the packed bed of spheres was calculated using the Whitaker correlation (Kaviany, 2002).

The energy equation for the solid phase is given by,

(1− ε)∂Ts
∂t

= − h̄β

ρscs
(Ts − Tf ) + (1− ε) κstc

ρscs

∂2Ts
∂z2

(9)

where the term on the left accounts for thermal inertia in the solid, and those on the right are the transversal heat transfer
term due to interstitial heat convection and axial heat conduction term. ρs is the solid density, cs is the solid specific heat
and κstc is the static thermal conductivity calculated by the Hadley correlation (Hadley, 1986; Kaviany, 1995). Using the
same dimensionless variables, the dimensionless energy equation for the solid phase is given by,

∂θs
∂t∗

= −BiFos(θs − θf ) +
α∗

γstcPrReωζ2r

∂2θs
∂z∗2

(10)

where γstc = ks/κstc is the thermal conductivity ratio, α∗ = αs/αf is the thermal diffusivity ratio, Bi = h̄dh/ks is the
Biot number and Fos = αs/ω`

2
c , where `c = (1−ε)/β is the characteristic length of the porous medium (Trevizoli et al.,

2013).
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2.3 Entropy generation

The entropy production in the one-dimensional passive regenerator model is due to heat transfer between solid and
fluid phases, axial heat conduction in the fluid and solid phases and viscous dissipation in the fluid. Therefore, the rate of
entropy change in a control volume containing both the solid and fluid phases is given by (Steijaert, 1999),

dS

dt

∣∣∣∣∣
CV

= −(1− ε)Ac

[
d

dz

(
q′′AC,s
Ts

)
dz

]
s

− εAc

[
d

dz

(
q′′AC,f
Tf

)
dz

]
f

+ ṁ
ds

dz
dz + S

′′′

g Acdz (11)

where the first and second terms on the right are changes in entropy rate due to axial conduction heat transfer in the solid
and fluid. The third term is the rate of entropy change associated with the fluid flow into and out of the control volume.
The fourth term is the rate of entropy generation in the control volume. The rate of entropy change in the control volume
is the sum of the entropy changes in the fluid and solid phases,

dS

dt

∣∣∣∣∣
CV

=
dS

dt

∣∣∣∣∣
f

+
dS

dt

∣∣∣∣∣
s

(12)

where the rates of entropy change in the fluid and solid are given by (Steijaert, 1999),
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]
s

− q′′HT
Ts
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where q′′AC,f = −κddTf/dz and q′′AC,s = −κstcdTs/dz are the axial heat fluxes in the liquid and solid domains. q′′HT =
h̄β(Ts − Tf ) is the heat transfer rate per unit surface area between the fluid and solid phases, where h̄ is the interstitial
convective heat transfer coefficient.

Combining Eqs. (11)-(14) and Eq. (12), the local rate of entropy generation per unit volume is given by,

Ṡ
′′′

g =
h̄β(Ts − Tf )2

TsTf
+
εκf
T 2
f

(
dTf
dz

)2

+
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T 2
s

(
dTs
dz

)2

+
1

Tf

∣∣∣∣∣uD
(
−dp
dz

)∣∣∣∣∣ (15)

where the first term on the right is the entropy generation rate per unit volume due to interphase heat transfer with a finite
temperature difference. The second and third terms are the entropy generation rate due to axial conduction in the fluid
and solid matrix, and the fourth term is the entropy generation rate per unit volume due to viscous friction. The entropy
generation in the regenerator during a cycle, Sg , is calculated by (in J/K),

Sg = Ac

∫ L

0

∫ τ

0

Ṡ
′′′

g dt dz (16)

Sg will be used as the objective function to be minimized in the regenerator optimization described next.

2.4 Performance evaluation criteria

The simulations for the entropy generation minimization were carried out based on performance evaluation criteria
(PEC) proposed by Webb and Kim (2005). The first criterion is the Variable Geometry (VG), where the regenerator
housing cross sectional area (or housing diameter Dh) and length (L) are allowed to vary, keeping a constant housing
volume. The second criterion is the Fixed Face Area (FA), where the regenerator housing cross sectional area is kept
constant and the regenerator length can vary, thus changing also the housing volume. For reasons that will be discussed
later, the Fixed Geometry (FG) criterion was not evaluated in this paper. The baseline (reference) housing geometry has
the following geometric characteristics: Dh = 25 mm and ζ = 2, where ζ = L/Dh is the aspect ratio of the regenerator
housing. The baseline housing volume is 24.544 cm3, and the ranges of the variables explored in the analysis are presented
in Table 1.
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Table 1. Cases for simulation based on the PEC.

PEC Dh range [mm] ζ range Housing volume (cm3) Dp range (mm)
VG 12.5-100 1-16 24.544 0.25-2
FA 25 1-16 Variable 0.25-2

As can be seen from Table 1, allDh and ζ combinations in the VG criterion result in a housing volume of 24.544 cm3.
The particle diameter is varied from 0.25 mm to 2 mm (a realistic manufacturing range), for each possible combination.
In the FA criterion, Dh is fixed at 25 mm, while ζ is changed from 1 to 16. The particle diameter is also varied from
0.25 mm to 2 mm for each possible combination. Additionally, for each combination of Dh, ζ and Dp, the simulations
were carried out considering the constraints presented in Table 2. The physical properties of the working fluid are those of
water and the solid material is assumed to have the physical properties of stainless steel. The g(t∗) function that describes
the fluid flow waveform was set as sinusoidal.

Table 2. Constraints of the numerical analysis and optimization.

Variable Value or range Units
ε 0.36 -

THHEX 283 K
TCHEX 323 K
∆Tspan 40 K
f 1 Hz

VG - ṁ 50, 75, 100 kg/h
VG - φ 0.5, 0.74, 0.99 -
FA - ṁ 50, 100, 150, 200 kg/h
FA - φ Variable -

As seen from Table 2, the frequency and the temperature span were kept constant in all simulations, while the mass
flow rate was varied over a certain range according to the criterion. The utilization factor, φ, may be constant or variable
depending on whether the PEC is VG or FA. The utilization factor is defined as the ratio of the thermal masses of the fluid
and solid phases,

φ =
cp,fmf

cp,sms
=

cp,fṁ

fcsρs(1− ε)AcL
(17)

The utilization factor is an important parameter in regenerator analysis, since high regeneration effectiveness is gen-
erally associated with φ < 1, i.e., a large thermal mass of the regenerative matrix (Rowe et al., 2005). Keeping in mind
that the solid regenerative material may be one of the most expensive items of the system, the lowest possible value of
utilization factor that maximizes the thermal performance should be always sought in regenerator design.

In the VG cases, at a fixed frequency, the utilization factor is only a function of the mass flow rate due to fixed housing
volume and porosity of the packed bed of spheres. On the other hand, for the FA criterion, the utilization factor will
decrease with ζ because the regenerative matrix mass increases with L, while the remaining parameters remain constant.
Thus, in the VG criterion φ can only be changed by changing the mass flow rate, while for FA cases, φ varies with the
mass flow rate and with the aspect ratio of the housing.

A fixed hot-blow regenerator effectiveness has been set as a performance constraint in the present analysis. The
hot-blow effectiveness is defined as,

ε =
Q̇

Q̇max
= 1− ṁcpf (THB − TCHEX)

ṁcpf (THHEX − TCHEX)
(18)

where ṁ is the average mass flow rate, THB is the average temperature of the fluid exiting the regenerator at the cold end
(during the hot blow). In the VG and FA criteria, a fixed hot-blow regenerator effectiveness is equivalent to a fixed heat
transfer rate when the mass flow rate and the temperatures of the sources are fixed. In the present analysis, a target value
of ε was set at 95%. It should be noted that the fixed geometry (FG) PEC, i.e., that in which the regenerator length and
cross-section area are kept fixed, was not evaluated in the present paper because fixing a value of ε in this case does not
necessarily correspond to a fixed heat transfer rate.
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In the VG cases, for fixed values of mass flow rate and utilization, the regenerator effectiveness will change as a result
of changes in Dh and ζ (which are reciprocal because of the constant housing volume constraint) or Dp. Changes in
cross-section area affect the fluid superficial velocity, the particle Reynolds number (which is also affected by Dp) and
the impact of axial heat conduction. The surface area per unit volume is directly affected by the particle diameter.

In the FA cases, the interstitial heat transfer coefficient is only a function of Dp, since the superficial velocity is
constant for a given mass flow rate, while the interstitial area changes with bothDp and ζ. The utilization factor decreases
with increasing ζ, which contributes to achieving higher values of regenerator effectiveness due to the larger thermal mass
of the solid phase.

3. NUMERICAL IMPLEMENTATION

3.1 Solution of the governing equations

The solution procedure described in this section was carried out in order to calculate the regenerator entropy genera-
tion, Sg , for each operating condition defined by a set of constraints specified in Table 2. For a specific value of flow rate,
the ranges of the variable parameters (e.g., housing and particle diameters, aspect ratio, etc.) were chosen according to
the PEC (VG or FA) presented in Table 1.

For each condition, the governing equations for the fluid and solid phases in dimensionless form (Eqs. 3, 8 and 10)
were solved using the finite volume method. The energy equations were implemented using an implicit scheme so that a
coupled solution of these equations is performed at a given time. Since the momentum equation is not position-dependent,
a fully explicit discretization scheme was adopted. Nevertheless, the Ergun inertial term contains a strong non-linearity,
which requires an interative solution (Patankar, 1980; Maliska, 2004).

At any given time, the fluid equations are solved first and the solid energy equation is solved next. The iterative
procedure is repeated until the convergence criteria are satisfied. The Weighted Upstream Differencing Scheme (WUDS)
was used in the fluid energy equation and the Central Difference Scheme (CDS) was applied in the solid. The solver was
based on a line-by-line method (Thomas Algorithm).

The initial conditions for the fluid and solid energy equations are linear temperature profiles, i.e. θf,s(z∗ = 0) = 0
and θf,s(z∗ = 1) = 1, to accelerate the numerical convergence. The fluid momentum equation needs only an initial
condition for the fluid velocity. Thus, u∗D(t∗ = 0) = 0. The boundary conditions for the solid phase are ∂θs/∂t∗(t∗, z∗ =
0) = ∂θs/∂t

∗(t∗, z∗ = 1) = 0. The boundary conditions for the fluid phase depend of the direction of the fluid flow.
For convenience, if u∗ > 0, then at z∗ = 0 an open inlet boundary condition is used where fluid at TCHEX enters in the
matrix, and at z∗ = 1 an open outlet is applied. On the other hand, if u∗ < 0, an inlet is applied at z∗ = 1 where fluid at
THHEX enters in the matrix and an oulet is set at z∗ = 0 (Maliska, 2004).

A numerical mesh consisting of 360 time steps and 200 volumes has been used. Based on preliminary numerical runs,
this mesh size was proven to be satisfactory because the difference in the calculated regenerator thermal effectiveness,
when compared with a mesh with 720 time steps and 400 volumes, was of the order of 0.5%, with 60% lower computing
time.

After numerical convergence of the velocity and temperature fields, Eqs. (15) and (16) are used to compute the entropy
generation in the regenerator, which is the objective function in the optimizations according to the VG and FA criteria.

3.2 Implementation of the PEC

After the results have been generated for a specific case (defined by the value of the flow rate and ranges of parameters
associated with each PEC), the regenerator configurations that yield a predefined value of effectiveness are identified. To
illustrate the analysis, Fig. 1 presents the results for PEC FA with ṁ = 200 kg/h. Lines of constant Sg (red lines) are
plotted together with lines of constant effectiveness (blue lines), as a function of the particle diameter (x-axis) and housing
aspect ratio (y-axis).

The target value of ε = 95% (blue solid line) can be achieved with different combinations of ζ and Dp, with Dh and
ṁ being held constant. For small Dp, ε = 95% can be achieved with small ζ because small particle diameters give rise
to high values of NTU (large surface area per unit volume). As Dp increases and the interstitial heat transfer becomes
poorer, it is necessary to increase the housing aspect ratio (which maintains a large heat transfer area, but decreases the
utilization factor) to achieve ε = 95%. Along the line of constant effectiveness at 95%, different values of Sg can be
verified, with a clear minimum occuring in the vicinity of a 0.5-mm particle diameter for this specific condition. Analyses
similar to the one presented in Fig. 1 were carried out for all cases simulated in the present work for the FA and VG PEC.
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Figure 1. Effectiveness (blue lines) and Sg lines (lines) in function of the particle diameter and aspect ratio (FA PEC with
ṁ = 200 kg/h).

4. RESULTS AND DISCUSSIONS

4.1 Contributions to the total entropy generation

This section illustrates the contributions of the three sources of entropy generation (interstitial heat transfer, axial
conduction and viscous dissipation) for two regenerators with the same housing volume, but very distinct values of housing
diameter and aspect ratio, as seen in Table 3. In the two cases, the particle diameter is varied between 0.25 and 2 mm.
The flow rate was 100 kg/h in both cases. However, it should be noted that the simulated cases do not have the same
effectiveness.

Table 3. Parameters of the case study on the contributions to the total entropy generation.

Case Dh [mm] ζ Dp [mm]
Case 1 12.5 16 0.25-2
Case 2 100 0.03125 0.25-2

Figure 2 shows the total entropy generation and the individual contributions as a function of the particle diameter for
Cases 1 and 2 of Table 3. Case 1 (Fig. 2.a) is a thin (small housing diameter) and long regenerator. As expected, the
contributions due to axial heat conduction are very small and the total entropy generation is basically a combination of
viscous dissipation (because of the long matrix length and the high superficial velocity) and interstitial heat transfer. For
small particle diameters, viscous dissipation is the main source of entropy because of the large values of pressure drop. As
the particle diameter increases, the pressure drop decreases but the interstitial heat transfer becomes less effective. In this
way, the entropy generated due to a finite temperature difference between the solid and the fluid becomes more important.
A local minimum Sg at a particle diameter of around 0.75 mm can be verified.

Case 2 (Fig. 2.b) illustrates an opposite situation, i.e., a large-diameter short regenerator, in which the contributions of
axial heat conduction are expected to be more important, because of the low superficial velocity and the short regenerator
length. The total entropy generation in Case 2 is a combination of the entropy production by axial heat conduction and
interstitial heat transfer. As shown in Fig. 2.b, for small particle diameters, axial heat conduction in the solid is the main
source of entropy generation. As the particle diameter increases, interstitial heat transfer is poorer and the dispersion in
the fluid phase becomes more important. In this case, the total entropy generated is almost constant because there are
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three main sources of entropy production that compensate each other.

Particle diameter [mm]

Sg
[J

/K
]

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 Heat transfer
Solid axial conduction
Fluid axial conduction
Viscous dissipation
Total

Housing diameter = 12.5mm
Aspect ratio = 16

(a)

Particle diameter [mm]
Sg

[J
/K

]
0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

Heat transfer
Solid axial conduction
Fluid axial conduction
Viscous dissipation
Total

Housing diameter = 100mm
Aspect ratio = 0.03125

(b)

Figure 2. Entropy generated by each contribution: (a) Case 1 - Dh = 12.5 mm and ζ = 16; (b) Case 2 - Dh = 100 mm
and ζ = 0.03125.

4.2 Variable Geometry

In this section, the results for the VG PEC are presented as a function of the variables Dh, ζ and Dp along the line of
constant 95% effectiveness. Figure 3 shows the variation of Sg as a function of Dp for mass flow rates of 50, 75 and 100
kg/h. Also, the values of Dh and ζ that correspond to the effectiveness of 95% for each Dp are also presented.

As can be seen, a minimum Sg exists for each mass flow rate, which means there are optimal values of Dp, Dh and ζ
that can be combined to yield an effectiveness of 95% with a minimum entropy production. The results for the VG case
are further illustrated in Fig. 4, which shows Sg as a function of Dp, Dh and ζ for ṁ = 50, 75 and 100 kg/h. The results
shown in Fig. 4 allow the identification of optimal combinations of Dp, Dh and ζ for each mass flow rate used in the VG
PEC for ε = 95%. A summary of these results is presented in Table 4.

Table 4. Optimized parameter ranges for the VG PEC.

ṁ Dp × Dh × ζ range
50 kg/h (1.12 mm × 18.5 mm × 4.94)
75 kg/h (0.64 mm × 24.5 mm × 2.13)

100 kg/h (0.34 mm × 30 mm × 1.16)

A deeper evaluation of the results reveals that for ṁ = 50 kg/h the optimal region involves bigger particle diameters.
Therefore, as the interstitial heat transfer is less effective and the viscous losses are smaller for bigger particle diameters,
long regenerative matrices with smaller housing diameters are required in order to achieve 95% regenerator effectiveness.
On the other hand, for ṁ = 100 kg/h the optimized region involves small particle diameters, larger housing diameters
and smaller values of aspect ratio. Since at high mass flow rates the viscous losses become more important, one needs big
diameter housings (to decrease the superficial velocity) and shorter matrices. Nevertheless, the small particle diameters
are necessary to improve the interstitial heat transfer and guarantee an optimal performance of the regenerator.

4.3 Fixed Frontal Area

This section presents the results for the FA PEC as a function of the variables ζ and Dp along the line of 95%
effectiveness. Figure 5(a) shows the variations of Sg and ζ as a function of Dp for mass flow rates ranging from 50 to 200
kg/h.

The results for the FA PEC show that for the lower values of mass flow rate the minimum Sg region is outside the
range of the simulated Dp region. However, there are minimum values of Sg for higher mass flow rates, which means that
for a housing diameter of 25 mm at the highest flow rates, there are optimum values ofDp and ζ that yield an effectiveness
of 95% with a minimum entropy production.
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Figure 3. Entropy generated in the VG PEC for ε = 95%: (a) ṁ = 50 kg/h; (b) ṁ = 75 kg/h; (c) ṁ = 100 kg/h.

The FA PEC is further explored in Fig. 6, which shows Sg as a function of Dp and of ζ for mass flow rates ranging
from 50 to 200 kg/h. Table 5 comprises the optimized regions for each mass flow rate.

Table 5. Optimized Optimized parameter ranges for the FA PEC

ṁ Dp × Dh × ζ range
50 kg/h (0.29mm × 25mm × 1)

100 kg/h (0.25mm × 25mm × 1.8)
150 kg/h (0.38mm × 25mm × 2.88)
200 kg/h (0.47mm × 25mm × 3.91)

As can be seen from the results, for ṁ = 50 and 100 kg/h the optimal region seems to be located in regions of small
particle diameters and small values of aspect ratio that are outside the ranges of the simulated parameters. However,
because the lowest values simulated of the aspect ratio were indeed very small, it is likely that the lowest values of the
calculated Sg at these mass flow rates are quite close to the minimum entropy generation values. As the aspect ratio and
mass flow rates are small, losses due to axial heat conduction are expected to be the main source of entropy generation at
these flow rates.

As the mass flow rate is increased, the advection term becomes more important in the energy equation and the value
of NTU is decreased. Therefore, a bigger value of the regenerator length (i.e., a larger interstitial area and a lower
utilization factor) is needed to keep the effectiveness at 95%. However, when ζ increases, a larger particle diameter is
needed to compensate for the entropy generated due to the viscous dissipation.
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Figure 4. Minimum entropy region analysis in the VG PEC for ε = 95% and flow rates of 50, 75 and 100 kg/h: (a) Sg as
a function of Dp; (b) Sg as a function of Dh; Sg as a function of ζ.

5. CONCLUSIONS

This paper presented an optimization analysis of passive regenerators based on the Entropy Generation Minimization
(EGM) method combined with a one-dimensional model for the fluid flow and coupled heat transfer in the porous regen-
erative matrix. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer
were taken into account in the mathematical model. The model was combined with the Variable Geometry and Fixed Face
Area Performance Evaluation Criteria (PEC) of (Webb and Kim, 2005) to determine optimal regenerator configurations
subjected to constant effectiveness constraints. The influence of parameters such as the mass flow rate, regenerator cross
sectional area, housing aspect ratio, utilization factor and particle diameter was investigated, and ranges of optimal values
of these parameters have been identified.
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Figure 5. Entropy generated in the FA PEC for ε = 95%: (a) ṁ = 50 kg/h; (b) ṁ = 100 kg/h; (c) ṁ = 150 kg/h; (d)
ṁ = 200 kg/h.
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Figure 6. Minimum entropy region analysis in the FA PEC for ε = 95% and flow rates of 50, 75, 100 and 200 kg/h: (a)
Sg as a function of Dp; (b) Sg as a function of ζ.
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