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Abstract. The study of uncertainties has been the subject of constant research due to its importance in the increasing 
the reliability of numerical models especially when it’s representing complex structural systems, thus its quantification 
becomes inevitable. In this work, the initial focus will be given to epistemic uncertainties, also called model uncertainty 
or non-parametric uncertainties that occur due to lack of knowledge or approximations made in the system under 
study. Analyses are performed from a structural dynamic system composed of a steel beam with boundary conditions 
fixed-free. The studies are possible when one have on hand the results of mean modelling corresponding to real model 
studied, of stochastic simulations obtained by non-parametric approach, and of experiments performed with the 
application of impulse excitation technique. With the tests it is possible to obtain the dynamic response as a function of 
frequency (FRF). In this article, the mass matrix will have its uncertainty propagated with different dispersion 
parameters in each case and considering additions of mass in original system in order to bring about changes in the 
behaviour of the response and a consequent increase of uncertainty in the system. Finally, conclusions are shown 
about the dispersion parameters used and its influence in the response of the system, about changes in the response 
due to increase of mass in the original system and about the reliability of the mean model corresponding to the real 
model studied. 
 
Keywords: Nonparametric Approach, Epistemic Uncertainty, Model Uncertainty, Uncertainty Quantification, Dynamic 
Models. 

 
1. INTRODUCTION 
 

The study of uncertainty quantification has been the subject of out constant research because of the importance in 
increasing the reliability of numerical models. According to Brandão (2007), the uncertainty is related to the variability 
of the variables that describe the system, and the variability is presented in structural systems in the form of uncertainty. 
The quantification of uncertainties in this case should be considered especially in models of complex systems, since 
such systems need to be tested so that details of complexity can be revealed and analysed, and even then only some 
information or conclusions can be deduced from them.  

However, mathematical models are constructed so that it is possible simulate real situations into appropriate 
software considering that the simulation can replace real experiments that would be performed by systems 
manufactured from designed systems. In this case the system under study is represented by a steel beam and one can 
distinguish three types of models considered in the analysis. They are: (a) Designed model, which corresponds to the 
system designed by design engineers. (b) Real model, that refers to the system manufactured from the system designed. 
In this case, one have differences in geometric parameters, in boundary conditions, materials etc. between the two 
systems, designed and real. (c) Mean model, concerning the modelled system from the designed system, it represents 
the real system and it is also called predictive model. It is modelled by the finite element method with boundary 
conditions fixed - free, 80 Euler – Bernoulli, 81 nodes and 160 degrees of freedom. 

The purpose therefore is to make the mean model can faithfully represent the real model, and in this process of 
modelling the mean model of the designed system, uncertainties are introduced and should be quantified so that it can 
increase the reliability of the numerical model constructed.  

In the process of modelling, errors can also be present in the model. But it is very important that a distinction be 
made between errors and uncertainties. According to Soize (2005a)  

 
[…] the errors are related to the construction of an approximate output    of output   of the mean 
model for a given input   and for a given parameter  . For instance, if the mean model is a boundary 
value problem (BVP) defined on a bounded domain, the use of the finite element method for 
constructing a  –dimensional space approximation of the BVP solution, introduces an error ‖    ‖ 
related to the finite element mesh size, where ‖ ‖ is an appropriate norm (Soize, 2005a). 

 
Then, specifically the model error must not be confused with the model uncertainty. According to Lian and 

Mahadevan (2011), the model error depends “[…] on whether the selected model correctly represents the real 
phenomenon”. By the way the model uncertainty arises mainly due to lack of knowledge of the system, due the errors in 
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the estimation of the theoretical models used in the analysis and not depends on their parameters. In the case of this 
paper, only model uncertainty are considered and quantified. 

Nevertheless, in this paper one will realized studies comparing the modelled system, called mean model, the 95% 
confidence limits (CL) of the uncertainties propagated in the mass matrix, and the real system that corresponds to the 
manufactured system. These studies are possible because one have on hand the FRF of mean model, the FRF of 
stochastic simulations obtained by non-parametric approach, and the FRF of real model obtained by experiments 
performed with the application of impulse excitation technique. Some variations in the mass matrix also will be induced 
considering additions of mass in original system in order to bring about changes in the behaviour of the response and a 
consequent increase of uncertainty in the system. In all this studies, different dispersion parameters will be used in each 
case. Finally conclusions will be showed about the influence of the dispersion parameter in the response of the system, 
about changes in the response due to the increase of mass in the original system and about the reliability of the mean 
model. 

 
2. DYNAMIC SYSTEM TO BE ANALYZED 

 
The equation of motion of a structural linear dynamic system with   degrees of freedom can be represented in 

frequency domain as follows: 
 

       ̈( )       ̇( )     ( )   ( ) (1) 
 
in which the vectors  ( ),  ̇( ),  ̈( ) respectively represent the vector of displacement, velocity and the acceleration 
of the mass of the system considered.  ( ) is the vector of the external force applied to the system.   √  .  ,   and 
  are respectively the     random matrices of mass, damping and stiffness. Such matrices are real, symmetric and 
positive-definite; they belong to positive-definite ensemble proposed by Soize (2000) and studied in Soize (2003a) and 
Soize (2005a), whose details can also be found in Justino (2012). 
The external force vector can be represented by: 
 
   (          )

  (2) 
 

The signal obtained on the analysis is a velocity signal, then: 
 
  ̇  ( ̇   ̇     ̇ )

  (3) 
 
 Particularly in this paper the Eq. (2) and Eq. (3) can be represented respectively by: 
 
   (           )

  (4) 
 
  ̇  (     ̇       )

  (5) 
 

The points     and  ̇    are considered because the response of the mean model, of the real system and of the 
simulated model need to have the same excitation point and the same reading point. In this case the vibration is caused 
by the excitation in the central position of the beam that corresponding to the length of 100 mm from their ends, and this 
point corresponds to the value of 79 on the finite element method. In the case of reading results, represented by the 
speed signal caused by the movement of the beam, it is captured by the laser vibrometer at the end of the beam and this 
point corresponds to the value of 159 on the finite element method. 

The response on the frequency domain is: 
 

  ( )  (          )   (6) 
 
where  ( ) is the frequency response function (FRF) of the studied system obtained for a defined frequency band, that 
in this case is given by: 
 
   [      ]   [  ] (7) 
 

In this paper the structural linear dynamic system is constituted by a steel beam with boundary conditions fixed-free, 
and it have dimensions, mass and properties as following: length: 200.000 mm; height: 23.064 mm; thickness: 2.736 
mm; mass: 137.28 g; modulus of elasticity: 183.000 GPa; density: 7.830 g/cm3. This dynamic system will be used to 
obtain the FRF of the mean model, of the experiment and of the simulated system. 
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3. MEAN MODEL 
 
The mean model was constructed by the mean matrix of mass, damping and stiffness. The mean matrix of mass and 

stiffness is obtained by finite element method. The dynamic system constituted by a steel beam was modelled with 
boundary conditions fixed - free, 80 Euler – Bernoulli elements, 81 nodes and 160 degrees of freedom. The damped 
matrix was considered as following: 

 
  ̅         ̅         ̅ (8) 
 
where         e           . 
 
 The FRF of the mean model is: 
 
     ̅  ̈̅( )     ̅  ̇̅( )   ̅  ̅( )   ̅( ) (9) 
 
  ̅( )  (    ̅     ̅   ̅)   (10) 

 
The bars over the symbols represent the mean values. The vectors and the matrices are deterministic, and the 

matrices are real, symmetric and positive-definite. 
The FRF of the mean model is obtained to be analysed with the FRF of the experiment and the FRF of the stochastic 

simulation of the same system. These responses will be showed on section 8. 
 

4. STOCHASTIC MODELING 
 
The stochastic modelling is the first step in order to proceed to the uncertainty quantification. First, one must choose 

the matrices that will be randomizes. In case of this procedure the mass, damping and stiffness matrices will be called   
in order to make a general procedure. This may be considered because, according to Adhikari (2007), the random 
matrices of the dynamic system have similar probabilistic characteristics. Thereafter, the sample space must be defined. 
It identifies the values that can be assumed by the random matrices and corresponds to the construction of the 
probability density function (PDF) for each of the matrices considered earlier. It should also say that at this stage of 
modelling, the success of the process depends of the use of the appropriate PDF for each of the random matrices, so that 
are eliminated on the analysis errors resulting from the use of an incorrect PDF. Fortunately, in the case of a damped 
linear dynamic structural system one have the Wishart distribution studied in detail by Adhikari (2007), Adhikari (2008) 
and Adhikari (2009). Some details of these studies can also be seen in Justino (2012). 

The nonparametric uncertainty quantification is possible when one apply the nonparametric approach that considers 
the Random Matrix Theory (RMT) and de Maximum Entropy Principle (MEP). This theory was proposed by Soize 
(1998) and Soize (2000), its validation was realizes on Soize (2001), Soize (2003a), Soize (2003b) e Chebli et al (2004), 
and an overview about the approach was made by Soize (2005b). Some details about the nonparametric approach, 
including RMT and MEP, can also be seen in Justino (2012). 

In addition, the modelling of uncertainty includes vibration problems in the range from low to high frequency. But 
an important information should be remembered here, the parametric and nonparametric approaches should be 
considered taking into account, besides the type of uncertainty that need to be quantified, also the vibration frequency 
range considered for the system. In case of low frequency bands of vibration, parametric uncertainties are considered in 
detail, already in mid frequency ranges, parametric and non-parametric uncertainties should be quantified. Finally, as 
regards the high-frequency bands of vibration, nonparametric uncertainties need to be quantified. 

Details about how to obtain the Wishart distribution for uncertainty quantification in structural dynamics models are 
not the subject of this article, but it can be seen on the references cited above. 

However it’s of great importance to know that the Wishart distribution is represented by the follow equation with its 
optimum parameters by: 
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in which   ( ) is the Wishart PDF of  ,    is the Gamma Function,   is a scalar parameter of Wishart PDF and   is the 
matrix parameter of Wishart PDF. 

 
5. DISPERSION PARAMETER  

 
The dispersion parameter   is the information about the uncertainty on the system. It’s very important information 

for uncertainty quantification and according to Soize (2003a), its calculation can be done by the following equation: 
 

   {
 {‖   [ ]‖ 

 }

(‖ [ ]‖ 
 )
}
  ⁄

 (12) 

 
in which  [ ] is the mathematical expectation of random matrix   and ‖ ‖  is the Frobenius norm of ( ). 
The dispersion parameter must also be calculated within an interval of possible values considering the 

nonparametric approach. According to Soize (2003a) the interval that must be considered for the calculation of this 
parameter is given by: 

 

     {
(    )

(    )
}
  ⁄

 (13) 
 

in which      is an integer that is given and fixed, and in this case,   is independent of  . It can be stated 
that, in general, the dimensions of the model in question are large and sometimes above 100. If an example, 
if consider      then will be       which, when applied in Eq. (12) correspond to a high uncertainty 
(0.856) which generally is not achieved in applications (Soize, 2003a). 

 
One aim of this article is the analysis of the dispersion parameter in the response of the system then is used the 

following values of dispersion parameters: 
 

         
       

 (14) 

 
wherein     and     are de dispersion parameters of the mass random matrix considered in the analysis.  

The range of valid values for the dispersion parameter is given in Eq. (13), and its maximum value when one 
consider       on this same equation is given by         . Nevertheless, it was chosen values smaller than the 
maximum value because it is not expected that a simple system as discussed in this paper has higher values of 
dispersion parameters. The values shown in Eq. (14) were chosen arbitrarily within the allowed range. 

 
6. STOCHASTIC SIMULATION 

 
The Monte Carlo method is used to perform simulations and obtain statistical response of the simulated system. 
It is necessary to generate a sufficient number of samples so that one can obtain statistics of the response or to 

determine a number of moments (mean and dispersion). The main problem now is to determine how many simulations 
are needed to construct an approximation of the response to pre-defined error. For this one used the quadratic 
convergence method. 

According to Soize (2005b), the convergence in accordance with the size of the random matrix and the number of 
realizations required in Monte Carlo simulation is given by: 

 

     (    )  {
 

  
∑ ∫ ‖  (    )‖

   
   

  
   }

  ⁄

 (15) 
 
in which   is the order of random matrices;    corresponds to the number of Monte Carlo simulation,   is the 

frequency on band  ,   (    ) corresponds to the response of the stochastic system calculated for each simulation   
with corresponding result   . 

The simulations are repeated until a convergence criterion is confirmed. A deviation value needs to be considered 
for this convergence and in this case the value is 5%. 

In case of this paper, the stochastic simulation was made by a computational program develop by the author. It was 
performed for a dynamic system described on section 2. The propagation of uncertainty occurs in the random matrix of 
mass. 95% confidence limits are calculated in this case. 

The results of these simulations will be showed and analysed with the FRF of the mean model and the FRF of the 
experiment of the same system and they will be showed on section 8. 
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7. EXPERIMENT 
 
In this section is shown details about the experiment performed with a dynamic system constituted by a steel beam 

as previously explained. 
The tests were performed at the Mechanical Vibrations Laboratory of Mechanical Engineering Institute, Federal 

University of Engineering (UNIFEI) – Itajubá – and it aims at obtaining the FRF of the system tested, which in this case 
is represented by the steel beam already described. 

 
7.1 Configuration of experiment 

 
The experiment was performed for the frequency range 0-1200 Hz and the propagation of uncertainty occurs in the 

random matrix of mass. In addition to test of the beam, two other configurations were tested. These configurations 
consist of the addition of masses (represented by magnets) on the beam. These variations in the mass were performed in 
order to demonstrate that any change in the project, or in this case, on the beam under study, be it an increase in 
reinforcing or fixing equipment in the beam for instance gives rise to even more uncertainty that cause changes on the 
system response. The FRF in this case becomes different of the FRF of original design. Thus the configurations are: 

Configuration 1: beam without the addition of magnets. It is showed in Fig. (1a). 
Configuration 2: beam with addition of two magnets at the positions 95 mm and 150 mm from the beam. It is 

showed in Fig. (1b).  
Configuration 3: beam with addition of four magnets at the positions 20 mm, 60 mm, 95 mm and 150 mm from the 

beam. It is showed in Fig. (1c). 
Measurements were taken from the left end to the right end of the beam. 
 

   
 

Figure 1 – Configuration of the experiment. (a) Configuration 1. (b) Configuration 2. (c) Configuration 3. 
 
The impulse was caused by an instrumented impact hammer and the excitation point was in the central position of 

the beam corresponding to the length of 100 mm from their ends. Already reading results, represented by the speed 
signal caused by the movement of the beam is picked up by the laser vibrometer at its end that corresponds at the 
position 200 mm in length. The signals from the load cell of the impact hammer and of laser vibrometer is captured to a 
signal analyser which then shows the FRF curves obtained in the testing. A general configuration of the experiment can 
be seen in Fig. (2). 

 

 
 

Figure 2 – General configuration of the experiment. 
 

8. SIMULATED AND EXPERIMENT RESULTS 
 
This section presents the results (FRF) obtained in stochastic simulations that corresponds to 95% confidence limits 

for uncertainty, the FRF for the mean model and the FRF obtained by the experiment. The frequency band of 0 – 1200 
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Hz was divided into two frequency bands: 0 – 800 Hz and 800 – 1200 Hz. So, was considered the two dispersion 
parameters shown on Eq. (14) for each of the two frequency band defined. The results (FRF) are shown as following. 

 
8.1 Frequency band: 0 – 800 Hz 

 
 Dispersion parameter = 0.11 

 

 
 

Figure 3 – (a) Convergence. (b) 95% confidence limits.        . Without additional magnets.  
 

 
 

Figure 4 – (a) Convergence and (b) 95% confidence limits.        . With addition of two magnets. 
 

 

 
 

Figure 5 – (a) Convergence and (b) 95% confidence limits.        . With addition of four magnets. 
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Observing the Fig. (3a), Figure (4a) and the Figure (5a), it can be said that a good convergence is reached to a value 
of number of simulations        . 

Considering now the Fig (4b) and the Fig (5b), there are no agreement between the FRF of the mean model and the 
FRF of the experimental test and the two curves are in large part outside of the 95% confidence limits. Moreover when 
observing the Fig. (3b), although there is disagreement of the FRF also in the frequency range 0-200 Hz due the gain to 
the FRF experimental, it can be said that the FRF of the mean model and the FRF of the test agreed well for a frequency 
range approximately 200 to 450 Hz, remaining within the 95% confidence limits calculated. 

 
 Dispersion parameter = 0.2 

 
By observing the Fig. (6a), Fig. (7a) and the Fig. (8a), one can say that as in the previous case, good convergence is 

attained for a value of number of simulations        . 
Taking into account the Fig. (7b) and the Fig. (8b), there are no agreement between the FRF of the mean model and 

the FRF of the test. On the other hand, in the case of the Fig. (6b), although there is disagreement of the FRF also in the 
frequency range 0-200 Hz due the gain to the experimental FRF. The FRF of the mean model and the FRF of the 
experimental test continued agreeing for frequency range approximately 200-450 Hz, but one can see the output of 
these curves of 95% confidence limits calculated. 

 

 
 

Figure 6 – (a) Convergence and (b) 95% confidence limits.       . Without additional magnets. 
 

 
 

Figure 7 – (a) Convergence and (b) 95% confidence limits.       . With addition of two magnets. 
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Figure 8 – (a) Convergence and (b) 95% confidence limits.       . With addition of four magnets. 
 
 

8.2 Frequency band: 800 –1200 Hz 
 

 Dispersion parameter = 0.11 
 

 
 

Figure 9 – (a) Convergence and (b) 95% confidence limits.        . Without additional magnets. 
 

 
 

Figure 10 – (a) Convergence and (b) 95% confidence limits.        . With addition of two magnets. 
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Figure 11 – (a) Convergence and (b) 95% confidence limits.        . With addition of four magnets. 
 
The value of the suitable number of simulations for these results remains          that to be seen in Fig. (9a), 

Fig. (10a) and Fig. (11a). 
When verifying the Fig. (9b), Fig. (10b) and the Fig. (11b), it is possible to say that there are no correlation between 

the FRF of the mean model and the FRF obtained in the test. One can also observe that these results remain partly 
within the 95% confidence limits obtained by stochastic simulation. However, there is a perceived greater proximity of 
the FRF curves of the mean model and of the experiment for frequency range approximately 980 Hz and 1200 Hz – Fig. 
(9b), and the FRF of the mean model remains entirely within the IC while the FRF of the test lies partly within this 
same range. 

 
 Dispersion parameter = 0.2 

 
When analysing the Fig. (12a), Figure (13a) and the Figure (14a), it is clear that the value of the suitable number of 

simulations for this case corresponds to        . 
In all graphs – Fig. (12b), Fig. (13b) and Fig. (14b), for the frequency range below approximately 980 Hz the 

results are not satisfactory. Verifying the Fig. (12b), one senses a greater proximity of FRF curves of the mean model 
and the FRF of the test for values of frequencies approximately from 980 Hz to 1200 Hz. Moreover, on this interval, the 
FRF curves are inserted in 95% confidence limits obtained in the simulation. 

 

 
 

Figure 12 – (a) Convergence and (b) 95% confidence limits.       . Without additional magnets. 
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Figure 13 – (a) Convergence and (b) 95% confidence limits.        With addition of two magnets. 
 

 
 

Figure 14 – (a) Convergence and (b) 95% confidence limits.       . With addition of four magnets. 
 

9. CONCLUSIONS 
 
First, it can be concluded about the results that when analysing the curves of convergence of the simulations, there 

are a good convergence to a value around         of Monte Carlo simulations, regardless of dispersion parameter 
used, which means that this amount is sufficient so that one can obtain reliable results for the system under study. 

In case of the Fig. (3b), relating to obtaining a 95% confidence limits for        , frequency range 0 – 800 Hz 
and without addition of magnets, it could be seen a good agreement between the results of the FRF of the mean model 
and the experimental FRF for a frequency range approximately 200 – 450 Hz. This result is not seen in the Fig. (4b) and 
in the Fig. (5b), which were obtained under the same conditions of the results presented in the Fig. (3b), but in this case 
with the addition of two and four magnets respectively. What one want to show with this study (by adding magnets in 
the system) is that the response of the analysed problem changes when adding more mass to the initial system, as this 
causes an increase of model uncertainty that was not considered in the original design of that system.  

In case of the Fig. (6b), Fig. (7b) and the Fig. (8b) relating to obtaining a 95% confidence limits for       , 
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frequency range 200 – 450 Hz (Fig. 6b). With regard to the behaviour of the two curves (the FRF of the mean model 
and the FRF of the experiment) are outside of the 95% IC calculated. This fact can be justified by the value of the 
dispersion parameter be high to such a study, since the simulated system corresponds to a simple structure. 

In case of the Fig. (9b) considered for frequency range 800 – 1200 Hz,         and without addition of two and 
four magnets respectively, it can be observed that there are a good proximity between the FRF of the mean model and 
the FRF of the test for a frequency range approximately from 980 Hz to 1200 Hz. In addition, in this same figure, the 
FRF curves are inserted in the 95% confidence limits on this frequency range. In case of the Fig. (10b) and the Fig 
(11b), one can consider that a greater part of the FRF curves are included in 95% confidence limits on the frequency 
range from 980 Hz to 1200 Hz but on the other results, when one considered the addition of the magnets, the mean 
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model does not represent well the real system tested. This is due because is not expected addition of mass on the system 
originally calculated, it increases the model uncertainty in the system and causes changes in the responses thereof. 

When one considered the Fig. (12b) for frequency range 800 - 1200 Hz,         and without addition of 
magnets, in general, one can say that the FRF of the mean model can satisfactorily represents the real system for the 
frequency range 980 - 1200 Hz, which does not occur on the other results in the Fig. (13b) and in the Fig. (14b). The 
justification here is that the quantification of nonparametric uncertainty becomes increasingly dominant with increasing 
frequency range analyzed. With regard to the two curves of FRF (mean model and experiment), they remain partially 
outside of the 95% confidence limits for the frequency range approximately 980 - 1200 Hz in the Fig. (13b) and in the 
Fig. (14b). This fact can be justified by the value of the dispersion parameter be high to such study, since the simulated 
system corresponds to a simple structure. 

On the other hand, some observations about the behaviour of the response need to be done in view of the different 
dispersion parameters considered in the analysis. Regarding the results obtained for the FRF of the mean model, the 
FRF of the test and a 95% confidence limits in the frequency range 0 – 1200 Hz and without adding mass, which 
corresponds to the real system – Fig. (3b), Fig. (6b), Fig. (9b) and Fig. (12b), and taking as reference the vertical axis of 
these graphs, it can be seen that the confidence region increases as the dispersion parameter values become higher. 

One can observe in the same graph results, but now with reference to the horizontal axis that as the frequency 
increases the width of the 95% confidence limits also increases on the natural frequencies region. This means that the 
uncertainty in the system increases with increasing frequency thus hampering its predictability. 
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