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5. CONCLUSION 
 
A simple model for a three bladed wind turbine with a fixed support is introduced in this paper. With this simplified 

model, results of stochastic analysis show that, the role of wind speed as a random variable as the most important term 
in the response of the dynamical system of the blades. This model is a basic model to understand the behavior of a wind 
turbine to bring more details into account for future works. In the next step, the authors are working on a flexible model 
of a wind turbine combined with multibody dynamics in Msc.ADAMS as a part of future works to model and study an 
offshore wind turbine that has a big role to use renewable energy sources within next few years. 
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