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Abstract. A dual strategy of remeshing and smoothing operations is introduced into the recent Arbitrary Lagrangian-
Eulerian/Finite Element code developed for modeling of two-phase flows and heat transfer. At the forefront, the approach
is introduced not only to discretize the continuum filled by the liquid and vapor phases but also to represent their common
interface by computational elements. While in synchrony, a Level-Set (LS) methodology has now been introduced to
better model the coalescing regions. Therefore, this work presents a two-dimensional idealized model concerning the
numerical modeling of the coalescence between two circular bubbles immersed in stagnant liquid. While the ALE/FE
approach can guarantee suitable remeshing to recover the structure of the mesh after the thin liquid film disruption, the
LS strategy locally determines the coalescing region by application of a function of compact support. The effect of the
collapse is assuaged and any sharpnesses owing to local topological changes occurring in the contact region tend to be
less protruding by smoothing. Two-dimensional numerical results show that this incipient methodology is a promising
technique in regard to coalescence studies and is able to be extended, a posteriori, to three-dimensional cases. Developed
mainly to deal with bubble interactions, these strategies aim to be embodied, in the future, into a two-phase flow context,
especially to simulate the coalescence taking place in transitional regions of passage from bubbly-to-slug and slug-to-
annular patterns.
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1. INTRODUCTION

In view of the growing field of applications involving multiphase flows, numerical tools have been developed to provide
physical insight into the complex dynamics ocurring at interfacial regions shared by different fluids in their different
phases. Inserted into this wider scope, gas-liquid flows cover a considerable range. They are present in chemical plants,
oil pipelines, microevaporators, heat exchangers, cooling systems, just to cite a few examples. Some important patterns
of two-phase flows are distinguished when gas bubbles permeate a continuum region of liquid either in a dispersive and
disordered way, such as bubbly flows, or as elongated bubbles separated by liquid slugs, such as slug flows. Depending
on the flow, the bubbles’ surfaces may undergo plentiful transformations concerning their topology while interacting with
one another. Generally, coalescence phenomena are initiated from these settings and their numerical simulation is an
important objective of MCFD (Multiphase Computational Fluid Dynamics).

Recent papers evince bubble coalescence as one of the most relevant issues in modeling the dynamics of two-phase
flows. For instance, Consolini and Thome (2010) included the coalescence in their analysis of the thin evaporating
film present in micro-channel slug flows by verifying how it may influence the heat transfer. Coalescence was included
by Ekambara et al. (2012) in their numerical modeling of gas-liquid bubbly flows. Coulibaly et al. (2013) studied the
bubble coalescence in subcooled nucleate pool boiling cases. On the other hand, efficient MCFD models to represent the
coalescence are on the summit of discussions. This work aims to introduce a promising new approach to assuage severe
topological changes caused by the coalescence between two bubbles based on a combination between an ALE (Arbitrary
Lagrangian-Eulerian) moving mesh formulation coupled with the Finite Element method and a Level-Set strategy enriched
with a function whose support determines the coalescing region. Henceforward, we will refer to these strategies by the
acronyms ALE/FE and LS.

Some strands of moving mesh methods applied to two-phase flows were lately disseminated in the literature as ALE/FE
by dos Anjos (2012), PFEM (Particle Finite Element) by Mier-Torrecilla et al. (2011), and MMIT (Moving-Mesh Inter-
face Tracking) by Quan (2011), Quan et al. (2009), Quan and Schmidt (2007). In all of them, the interface is described
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by computational elements (nodes, edges, faces) upon a body-fitted Lagrangian fashion. Consequently, the nodes, pri-
marily, are advected with the own flow velocity, so that the condition of sharp interface (zero-thickness) is maintained.
This capability proposes a powerful advantage to simulate coalescence since the bubbles’ boundaries deform as material
surfaces. In the vein of these Lagrangian-like methods, another approach including LS imprints was presented by Sousa
and Mangiavacchi (2005) at which the values of the level-set function is stored in each mesh node being, therefore, ex-
empted of further calculations to attain smoothness. This work is rooted in a similar basis as regards the LS methodology,
but it handles geometrical operations to remedy the mass unbalance that might come to pass at the coalescence region
instead having to perform calculations of smoothing functions. The method also has the advantage to capture topological
complexities occurring in the liquid thin film region between the bubbles because an algorithm based on distance calcula-
tions is applied. Next, the coalescence region is numerically determined by a function that pervades the original level-set
function to confine the elements closer to the interfaces within a tolerance domain in order to mimic the real physics. This
forcibly narrowed region is referred the combination zone.

Although the ALE/FE can be used for discretization of both computational domain and interfaces, the LS strategy is
appended as a tool to determine the combination zone where the coalescence should take place. Examples of LS methods
coupled to FE are Groß et al. (2006), in the context of multiphase flows, and Li and Shoppie (2011), concerning the
interface-fitted representation. Aside from these studies, a general overview about LS methods is conducted by Osher and
Fedkiw (2001).

Apart from their physical constitution, bubbles (also drops) may be recognized mathematically as topological surfaces
- see Bloch (1956). In real applications involving two-phase flows, their boundaries may assume varying shapes depending
on the flow pattern at which they emerge. Owing to this topological richness, formal terminologies could be coined.
Shape regimes of bubbles were previously presented by Clift et al. (1978) in two major classes: static (sessile, pendant
and floating bubbles) and free-motion (spherical, ellipsoidal and “spherical-cap” bubbles). Notwithstanding, incremental
terminology appeared in the current literature. Some examples are cited by Michaelides (2006), such as “spherical cap
with closed wake”, “oblate ellipsoidal disk”, and “skirted with wavy unsteady skirt”.

At this point, it is worth to remember a few adimensional numbers that are related to bubble dynamics. Some of them
are used to determine the shape regimes aforementioned. For instance, when interfacial effects are not negligible in the
flow, the Weber number, We, is used to quantify the ratio between inertia and surface tension forces, whereas the Eötvös
number, Eo, is used to quantify the ratio between buoyancy and surface tension forces. Besides, the classical Reynolds
and Froude numbers, Re and Fr, are used in two-phase correlations as well. Equation (1) groups the definition of these
numbers.

We =
ρ0L0U

2
0

σ0
, Eo =

ρ0g0D
2
0

σ0
, Re =

U0L0

ν0
, F r =

U0√
g0L0

, (1)

where all the variables described are measures of reference chosen accordingly to the problem to be tackled, namely,
length (L0), velocity (U0), density (ρ0), gravity (g0), diameter (D0), surface tension (σ0), and kinematic viscosity (ν0).
Furthermore, Eq. (2) defines another adimensional used to characterize the shape of bubbles. The Morton number Mo can
be obtained by combining powers of We, Fr, and Re:

Mo =
We3

FrRe4
(2)

Some two-phase flow patterns are characterized by bubble interactions and are being extensively studied. We can
refer to Cheng et al. (2008) for a review of flow patterns and maps. Coalescence phenomena observed in these flows are
motivating a growing research interest. Recently, bubble dynamics studies for mass transfer purposes, for instance, were
conducted by Agrawal (2013). Regarding nucleate boiling and chemical process, we can cite Jingliang et al. (2012).

Other flow patterns showing profuse topological changes are also identified in nuclear reactor applications as depicted
in Fig. 1, an abridged picture extracted from Shen et al. (2012) which shows gas-liquid structures appearing on upward
flows in a narrow rectangular channel. In such flows, bubble coalescence is common to happen mainly amid regime
transitions and this issue is addressed by Julia and Hibiki (2011).

In horizontal microchannel two-phase flows, regime transitions are also observed. Among them, bubble-to-slug is a
particular regime we will look at here. Figures 2 and 3 show macro-to-microchannel transition curves obtained through
experimental studies in two-phase flows performed by Ong and Thome (2011) for the artificial refrigerant fluids R236fa
and R134a, respectively, where there is an explicit zone where the coalescing bubble pattern takes place. They declare
that, in some cases, the bubbles violently coalesce and no clear interface between the two phases can be seen. It is
also emphasized in Revellin et al. (2008) that collision of bubbles in microchannels may be one of the most important
parameters influencing flow pattern transition. In turn, such topological changes are a difficult task when tackled through
MCFD methods.

Motivated by profuse topological complexity observed experimentally in several gas-liquid two-phase flow patterns,
one first seeks MCFD methods more and more effective to compensate the shortcomings produced by discretization pro-
cesses. Mass conservation errors, which contribute for a bad representation of the physical problem, could be emphasized
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Figure 1: Two-phase upward flow structures in a narrow rectangular channel. Adapted from Shen et al. (2012).

Figure 2: Flow pattern transition lines for R236fa. Extracted from Ong and Thome (2011).

Figure 3: Flow pattern transition lines for R134a. Extracted from Ong and Thome (2011).
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as an example. It is our interest in this work to propose an addition to the ALE/FE approach to be able to resolve compu-
tationally bubble coalescence phenomena. Certainly, one of its most powerful characteristics is treating both liquid and
gas phases with the same computational mesh. This is a positive point as regards tracking the interfacial dynamics.

This paper is organized as follows: Section 2. introduces the equations governing the two-phase fluid flow system and
explains the scheme used to calculate important properties such as curvature; Section 3.describes an algorithm based on
ALE/FE coupled to LS approach to address the coalescence problem as well as the overall methodology. We consider a
bidimensional simplified model of head-on coalescence between two circular bubbles with analogous extension to three-
dimensional cases; in the Section 4., some numerical results are showed and followed by discussions, and Section 5.ends
up with the conclusions.

2. GOVERNING EQUATIONS

The governing equations used in this work take an ALE frame into account in their formulation. Some arbitrariness is
allowed to the mesh nodes movement when the ALE description is used. For instance, the nodes may either stay stationary
as an Eulerian frame, move together with the fluid as in the Lagrangian frame, or even move in a specified direction. This
freedom permits a continued rezoning capability. Additionally, larger distortions are handled with good resolution.

To reach its goal, the ALE methodology establishes an “intermediary” domain called the referential domain to make
an interplay between the material and spacial domains used to map the movement. In mathematical language, the ALE
description can be understood through homeomorphisms. According to Donea et al. (2004), from these mappings, the
velocity field is called the convective velocity and can be written as

c = v − v̂, (3)

where v is the fluid velocity and v̂ is the mesh velocity.
For the two-phase modeling discussed here, we consider that the fluid properties are respectively constant everywhere

inside the liquid and vapor phases, differing by a discontinuity jump only over the interface locus. In other words, we
use a separated flow model that leads to a simplified version of the momentum equation (see, for instance, Hewitt and
Hall-Taylor (1970)). Furthermore, the incompressibility condition is assumed to be valid for both phases. Gravitational
and interfacial forces are considered to be present in the model as well. These hypotheses lead to the following pair of
adimensional equations valid for each phase separatedly.

ρ

(
∂v

∂t
+ c · ∇v

)
= −∇p+

1

Re
∇ ·
[
µ
(
∇v +∇v T

)]
+

ρ

Fr2
g +

1

We
f (4)

∇ · v = 0, (5)

where v is the fluid velocity, p the pressure, ρ the density, µ the dynamic viscosity, g the gravitational force, and t the
adimensional time. Fr and We have already been defined in the Eq. (1), while f accounts for interfacial effects and is
given by

f = σκn, (6)

where σ is the surface tension, κ is the curvature locally evaluated over the interface, and n is the unit normal vector
over each interface node pointing outward the vapor phase. The discrete process to calculate the unit normal vector
in two-dimensional domains takes two properties into account. Firstly, the interface is a closed curve represented by
a set of linear elements and, hence, structured. That is to say, each interface node has always two neighbor elements.
Secondly, the normal vectors for each neighbor element can be obtained by orthogonalizing the unit tangent vectors to
each element, which, in fact, are obtained by normalizing the element length itself. In turn, the normal vector for the
shared node is evaluated by summing the contributions of the normal elemental vectors. This scheme is depicted in the
Fig. 4. Mathematically, if n(eL,i),n(eR,i) are the unit normal vectors evaluated over the neighbor elements respectively
at left and at right of the interface node xi, then,

n(eL,i) = Rπ/2 [t(eL,i)] , n(eR,i) = Rπ/2 [t(eR,i)] , (7)

where

t(eL,i) =
xL,i − xi
||xL,i − xi||

, t(eR,i) =
xR,i − xi
||xR,i − xi||

. (8)

Above, xL,i,xR,i are the vertices of the neighbor elements not matching the interface node and t(eL,i), t(eR,i) their
respective unit tangent vectors generated by the rotation matrix Rπ/2. Directly from Eqs. 7 and 8, we get

n(xi) = n(eL,i) + n(eR,i) = Rπ/2 [t(eL,i) + t(eR,i)] . (9)
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(a) (b)
Figure 4: Scheme for the calculation of the curvature: (a) continuous and discrete versions; (b) effect of the curvature
upon the normal vector at xi.

Meanwhile, the curvature κ(xi) is evaluated for each interface node by an approximation adapted from a formulae set of
the Frenet’s frame, or, even more formally, Frenet-Serret Theorem - see Bloch (1956) - for curvature and torsion. Equation
10 is the continuous version of one among the Frenet’s formulae relating κ and the unit vector tangent t to the interface.

κn =
∂t

∂s
≈ t(eL,i)− t(eR,i)

h̄
. (10)

Since the elements eL,i, eR,i do not necessarily have the same size, the evaluation of κ(xi) is undertaken as an average
distribution over the mean length h̄ of the neighbor elements given by

h̄ =
1

2
(hL + hR), (11)

where hL, hR are the lengths of the neighbor elements. Also depicted in Fig. 4, at left, it is seen that h̄ binds the two
centroidal points xm,L,xm,R. At right, a sketch was added only to illustrate how κ affects the normal vector ni by
stretching it. From Eq. 10, we infer that the higher the tangential derivative along the interface, the higher the norm of the
vector κni, because if, for instance, we choose a sequence (κp) such that κ1 < κ2 < . . . < κp, then

||κ1ni|| < ||κ2ni|| < . . . < ||κpni||. (12)

In other words, high curvatures tend to magnify the normal vector at xi.
Additionally, the Heaviside function is used in this work to manage points near to interface sites. It identifies if an

arbitrary node belongs to the liquid phase, the vapor phase, or the interface. Since its image is, in fact, the discrete set
{0, 1}, it is not unexpected to assign a mean value to identify interface nodes and define H as

H(x) :=

 0, if x ≡ xL
0.5, if x ≡ xI

1, if x ≡ xV ,
(13)

where the subscripts L, I, V stands for liquid, interface, and vapor.
Equation 6 is a version of the Continuum Surface Force (CSF) model introduced by Brackbill et al. (1992), in which

the surface force was redesigned as a volumetric force. In terms of the aforementioned equations, the force f in the Eq.
(6) is obtained by a FE procedure that solves the linear system given by

Mf = ΣGH, (14)

where Σ is a diagonal matrix whose entries are given by σκ1, σκ2, . . . , σκP , for P pressure nodes over the mesh. G is
the gradient discrete matrix and H the Heaviside function.

3. METHODOLOGY: ALE/FE AND LEVEL-SET FOR BUBBLE COALESCENCE MODELING

In this section, we explain a combined methodology to simulate coalescing bubbles. On the one hand, the ALE/FE
approach provides the main capability to remesh the thin film local region reconnecting computational elements affected
by topological change. On the other hand, the LS strategy is focused on summing a function whose support is liable to
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determine the coalescing region. For simplicity, we start from an idealized two-dimensional model describing a “head-
on” coalescence process between two rounded bubbles immersed in a liquid. Even though this model does not take the
deformation of the bubbles’ surfaces into account, the idea behind it can be conveniently conveyed to three-dimensional
problems with different bubble shapes because it is focused on the thin liquid film region and not strictly on any transient
topology experienced by the surfaces.

First of all, it is convenient to use some definitions. Let Ωb,1 (Γb,1) and Ωb,2 (Γb,2) be the domains (boundaries) of
the bubbles in vapor phase, and Ωf,ε the in-between region of the liquid thin film near the bubbles. ε is a small parameter
related to the minimum distance between Γb,1 and Γb,2. In this discussion, the bulk region of liquid far from the thin film
region whose scale is much bigger than ε is left untreated. It is feasible to set extreme points (x̄1, x̄2, where x̄1 ∈ Γb,1 and
x̄2 ∈ Γb,2) to set limits for the minimum distance between the bubbles. Figure 5 depicts the idealized two-dimensional
model, whereas Fig. 6 is an augmented view of the continuous thin film region.

Figure 5: Two-dimensional idealized model for two near bubbles instantly before head-on coalescence.

Figure 6: Augmented view of the liquid thin film region between two near bubbles.

In order to represent discretely the coalescence process through the ALE/FE approach, we will refer to Fig. 7, which
is a sequential sketch showing the coalescence in three steps. For now, it is enough to recognize the edges in black
representing the part of the mesh defined as vapor phase; the edges in red, the liquid phase, and the edges in blue, the
interfaces. As we have already noted at first glance, one of the main characteristics of the ALE/FE methodology is
to describe the bubbles interfaces as nodes, edges, and faces. In this manner, the interfaces Γb,1,Γb,2 are made up by
interconnected edges whose nodes are part of the same mesh used to discretize the liquid phase. For the sake of this
sharing, the elements belonging to the thin film region can be tracked and identified as elements in coalescence so that
they are, later, carried forward to the vapor phase and marked as elements of this phase.

With reference to the Fig. 7, the dashed green line represents the distance ε between the bubbles. In (a) the elements
filled in red were intentionally marked as coalescing elements in this explanation. Since the elements are identified,
geometrical operations (insertion, deletion, and flipping) are performed upon the nodes and edges in order to adapt the
mesh, keep its quality and correct eventual mass unbalance. This step is represented in (b). The edges in yellow are
inserted after the deletion operations that occurr to break up the interface and mediate the merging process. That is to say,
the liquid is squeezed out while the thin film retracts and the onset of the coalescence starts off. In the sequel, (c) depicts
the third step, when the coalescence process is evolving. At this stage, the yellow edges were replaced with black edges
to highlight the merging process. As the simulation runs, similar transformations tend to be carried out by the code for
the elements within the thin film region that obey the proximity criterion based on the minimum distance ε.

The minimum distance between the bubbles can be calculated by using the well-known Rn formula for distance
between vectors

d(x,y) =

[
n∑
i=1

(xi − yi)2

]1/2

(15)

if the arguments above are replaced with the extreme points x̄1 and x̄2. On the other hand, the minimum distance has to
be determined by a numerical procedure which should span all the pairs of nodes belonging to Γb,1 and Γb,2, but inside a
combination zone limited by another numerical artifice. Consequently, this combination zone tends to reduce calculations,
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(a) (b) (c)
Figure 7: ALE/FE discretization of the thin film region between two bubbles: (a) before coalescence; (b) onset of coales-
cence; (c) during coalescence.

since it is not necessary to go through all the interface nodes in order to find the minimum distance. In Quan et al. (2009),
an algorithm based on the creation of a combination zone to simulate the head-on bubble coalescence is tested. However,
the author points out that not only the combination zone but also the process to determine it is a task depending on the
problem and should be tuned for each case.

In seeking to determine the combination zone between the two bubbles, we invoke here a LS context by defining
particular functions. These functions, on the whole, not only specify the interface nodes, but also manage the local
smoothing of the coalescing elements. Let φ be the standard level-set function defined as

φ(x) := min
xI,k∈Γb,k

{d(x,xI,1), d(x,xI,2)} . (16)

Since two interfaces are nearby each other, φ is introduced to detect the interface nodes belonging to the boundary of the
bubbles and responding for the curve of contour zero. Before the coalescence, the bubbles are separated by a tiny distance.
However, numerically, it is convenient to establish ε as the limiting parameter from which the coalescence should start off.
Consequently, all the elements inside this delimited area will undergo geometrical transformations and will be pending
for remeshing. In the new methodology now introduced, we wish that the coalescing elements are kept subordinate to a
function Wε whose support will affect directly the zero contour of the level-set function. In other words, Wε pervades the
combination zone to cause smoothness in the curve identified by φ(x) = 0. We call Wε a blending function, which is
defined as

Wε(x) :=


1− ||x||

ε
, if x ∈ Ωf,ε

0, otherwise.

(17)

Similarly to φ, Wε also is cone-shaped, but centered in the combination zone and having a small support. When Wε

“pierces” φ and blends their contributions, a new function φ̃ is created by defining

φ̃(x) := φ(x)− 2εWε(x). (18)

Further details about φ̃(x) are given in the next section.

4. NUMERICAL RESULTS AND DISCUSSIONS

Some numerical tests are shown in this section. Figure 8 is a plot of φ̃ for a two-dimensional domain of size 6D×4D,
where D is the diameter of the bubbles. The small coniform hill in the middle displays the contribution of Wε. As a
result, the contour zero of φ̃ is a new curve intercepted by a central bulb-like neck which foreshadows a bridge for the
coalescence. Figure 9 shows the shaded contour zero of φ̃ as well as the resulting curve under a simple layout.

Additionally, we present a numerical simulation of a oscillating drop immersed in a stagnant liquid in order to show
the capability of the ALE/FE method to capture topological changes of surface. This is a benchmark test concerning code
validation and was performed by dos Anjos (2012) under a three-dimensional version. The domain of simulation is a
square with dimensions 8D×8D, where D is the drop diameter. Initially, the drop is slightly symmetrically ellipsoidal in
relation to the x−axis. Apart from gravity effects, the drop is weakly perturbed, so oscillating with an induced frequency
ω of

ω =

[
(n3 − n)σ

(ρin + ρout)r3

]1/2

(19)
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Figure 8: Function φ̃ plotted over the coalescence domain 6D × 4D.

(a) (b)

Figure 9: Contour zero of φ̃: (a) shaded, with the white rectangle highlighting the coalescing bridge; (b) simple curve.

and decay amplitude of

a(t) = a0e
−t/τ . (20)

In the Eqs. 19 and 20, n is the mode of perturbation, σ is the surface tension coefficient, ρin, ρout the densities of the
internal and external fluids, r the drop radius, and ν the kinematic viscosity. When varying its diameter, the drop surface
obeys the following time-depending equation

y(t) = y0 + a(t)cos(ωt), (21)

where y0 is the y−axis initial coordinate.
For the present simulation, all the parameters before mentioned were set as n = 2, σ = 1, ρin = 1, ρout = 0.001,

r = 0.5, ν = 1, a0 = 0.1r, and y0 = 0. Given the small external viscosity imposed, the oscillatory process is governed
by interfacial forces and counterbalanced by convective forces. In the Fig. 10, the image of the Heaviside function is
depicted for the oscillating drop both in overview and augmented views. As can be seen, the interface region is notably
distinguished by colors and higher refinement.

(a) (b)
Figure 10: Heaviside function detecting the interface region as well as the liquid and vapor phases for the oscillating drop
test: (a) overview of the two-dimensional FE mesh; (b) FE mesh zoomed in.

Five levels of adaptive refinement were applied over the interface mesh as exhibiting the accuracy of the method to
accompany the topological changes of the interface. Figure 11 is a plot of the variation of amplitude versus time of the
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Figure 11: Comparative plot of the analytical diameter y−variation for the oscillating drop test against five increasing
levels of interface local refinement.

drop, i.e., it shows how the y−diameter oscillates along the time. Between the coarsest mesh, whose elements have a
characteristic length of h = 0.2, and the finest mesh, with h = 0.012, three intermediary levels were simulated: h = 0.1,
h = 0.05, and h = 0.025. Overall, the numerical solutions tend to the analytical solution and, consequently, better
accuracy is achieved as the mesh is refined. Three particular plots of the mesh velocity field were extracted from the time

(a) (b)

(c)
Figure 12: Mesh velocity field surrounding the oscillating drop for three different times: (a) t ≈ 0.20; (b) t ≈ 0.59; (c)
t ≈ 0.71.

interval T = [0, 1.2] for a simulation with level h = 0.025, CFL = 0.8 and convenient time instants chosen inside T ,
namely, t ≈ 0.20; t ≈ 0.59, and t ≈ 0.71 are shown in the Fig. 12. Inside T , the drop completes a period of oscillation
and the mesh velocity field changes accordingly as it can be observed. In (a), the drop begins to dilatate along the y−axis
because of the perturbation imposed. Simultaneously, both the mesh points of the interface and those surrounding it are
moved in order to follow the topological change of the surface and the external fluid layers pushed out. Inasmuch as the
incompressibility constraint must to be satisfied, the drop is flattened in the x−axis. In (b), the drop is going the inverse
process and dilatates along the x−axis until achieving the sequential shape depicted in (c) after a few seconds. This
process is repetitive along the periods of oscillation, other than by the direction of the vectors that is inverted after each
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peak of amplitude and does not require extensive analysis. Moreover, very small velocities are, indeed, expected to occur
for the drop as it can be verified in each plot, where the magnitude of the mesh velocity field is scaled by the size of the
vectors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 13: Simulation of the coalescing bubbles: (a) t ≈ 0.17; (b) t ≈ 0.33; (c) t ≈ 0.52; (d) t ≈ 0.85; (e) t ≈ 1.48; (f)
t ≈ 1.94; (g) t ≈ 3.08; (h) t ≈ 4.46, and (i) t ≈ 5.49.

In order to verify that the ALE/FE code is capable to simulate the topological changes following the coalescence
between the two bubbles, the Fig. 13 shows a series of pictures extracted along the evolution of the bubbles already
coalesced. For better recognition of the phases and interface, plots of the Heaviside function are used again. In this
simulation, both the governing parameters and imposed conditions are similar to the oscillating drop test, except for the
CFL number (now unitary) and slight changes in the mesh refinement control.

The simulation starts off from the configuration described in the Fig. 9. As the step times advance, the central bulb
is enlarged vertically, so bridging the coalescence as depicted in (a), (b), and (c). Since the surface tension works to
minimize the surface area, the curvature at the upper and lower regions of the bulb is reduced and the two bubbles begin
to seem a unique bubble, which achieves a sudden ellipsoidal shape followed by horizontal shrinking. This is depcited in
(d), (e). and (f). In the last row of snapshots, (g), (h), and (i), the bubble undergoes a dumping effect that begins from the
highest vertical stretching unto recovering a circular shape. Posteriorly, the bubble attains a behaviour slightly oscillatory
due to the remaining effect of dumping, but theses steps were omitted.

5. SUMMARY AND CONCLUSIONS

Purposes of this paper were: to address the process of bubble coalescence in two-phase flows with focus here on a
coupled approach between the ALE/FE and LS methodologies; to propose a numerical strategy to model the coalescence
of two spherical bubbles by delimiting a combination zone that confines the liquid thin film region near the bubbles, and
to present inceptive numerical results guided by the presented idea.

The standard level-set function was enhanced by a new blending function whose support determines locally the coa-
lescing zone. Cumulatively, this cone-shaped function produces a smoothing effect upon the original level-set function
which reflects over the curve of contour zero when forming a central bulb that induces the coalescence. Thereafter, the
instantaneity of the real coalescence is condensated into a numerical step.

ISSN 2176-5480

9598



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Additionally, a benchmark test based on the oscillation of a drop immersed in a stagnant liquid was performed in
order to assure that the ALE/FE code is able to deal with calculations of surface tension in a reasonably precise way.
The results showed good convergence in comparison with the analytic solution. Similarly, the test of the bubbles already
coalesced was appended to show the capabilites of the code to evaluate fairly the topological changes arising from the
simple collision between two circular bubbles.

Although exist several experimental studies that firm the important role played by the coalescing phenomena in two-
phase flows, mainly around transition regimes, this issue still is challenging for MCFD methods and numerics, inasmuch as
interfacial effects are difficult to capture but they dominate the liquid thin film region. On the other hand, the introductory
numerical results obtained here underpin the quality of ALE/FE to discretize profitably the interface of an arbitrary bubble
immersed in a liquid solution and led us to the pursuit of deeper investigations that include LS schemes for applications
enfolding bubble coalescence. In this trail, this numerical model also seeks precise concordance with experimental data
and observation. Advancements and improvements in the root idea of the method were presented and the main research
targets to remaining study include: extension to three-dimensional cases and modeling of the coalescence between bubbles
with arbitrary surface topology, such as Taylor bubbles evolving in microchannels.
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