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Abstract. The aim of this study is to investigate the mechanical behavior of a hyperelastic polymer under pt
condition obtained through the planar tension testing. The material used for manufacturing the rectann sheet
specimens was an adhesive based on silanefied polymer (FlextecFT101). The full field displacement
measured by means of the Digital Image Correlation (DIC) method. In addition, classical hyperelastic cor
models based on strain-engrfunctions that are available in the literature were used. The -stretch relations
were experimentally achieved. Finally, the experimental results indicated a nonlinea—stretch behavior and
theoretical models were fitted to the measured df stress versus amount of shear in order to determine the |
shear modulus.
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1. INTRODUCTION

Elastomeric materials have beappliec in many engineering areas such as iaatiive parts like tires, engine and
transmission mounts, center bearing supj, and exhaust rubber parts, seals syst@misso 0. Nowadays, the design
of these highly technical parts necessitates the use of simulation tools such as finite elemeres and the
mechanical proprieties knowledgkn this context, an appropriate constitutive model is an essential prerequis
good numerical predictiond/@arckmann aniVerron, 2006).

The mechanical properties of a perfectly elastic material may cently be represented in terms of the st
energyW per unit volume for a pureomogeneol strainwhich must be a function of two strain invarial; andl.,.
These invariants are expressible in terms of principal extension ration;, A, e A3 (Treloar,1943; Jones and
Treloar,1975Rivlin and Saunders,19t.

For material characterizatipdifferent types ¢ mechanical tests may be perfornmdrubber. In order to provide
pure shear on a thin sheet of rubliles- material,a planar shear test was carried bytTreloa (1943). Rivlin and
Saunders (1951)leveloped an experimental and theoretical investigation on pure The characterization of
hyperelastic rubbelike materials by means of planar testing has also been perfornSassoet al.,2008. Initial shear
modulus of a hyperelastic material has been estimated by means of simple shear test (Nul. Besides, standard
ISO 1827 specifies the method for the determination of the shear modulus for

The scope of the present work focusn mechanical behavior of a hyperelastic polymer under pure shear cot
obtained though the planar tension testing. Moreover, the stretch values were measured by means of DI The
material parameters, taking into accoexperimental data and the most well-knomvadel: in the literature for rubber
such as Mooney-Rivlin, Yeoh, Arruddoyce, Ogden and Vargas, wesstimated using LevenbeMarquardt method
implemented into Matlab routines.

2. EXPERIMENTAL PROCEDURE

In order to provide pure sheaa planarshear test was carried oufr€loar, 1943; Treloar, 2005; Rivlin ai
Saunders, 1951). This test waased on a rectangular sheet of FT 101 adhesive under tension in its plane norm
clamped edges. Figureillustrates the rectangular specimen under ter Thin sheets with dimensions of 150x70x.
mn? were employed, the effective area being 150x1C* due to the clamped edges. It is important to emphasiz:
the width of the effective area waslaast 10 times greater than the length in the stretching direction. As a res
specimen must remain perfectly constrained in the lateral direction while specimen thinning occurs only in the
direction. Experimental tests were performed er quasistatic loading conditions (without time effects) and at rc
temperature, i.e., 25 ° C.

The digital image correlation (DIC) method was employed for measuring the displacements of the polyme
a powerful opticalhumerical method developed estimate fullfield surface displacements, being well documente
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the literature (Dally and Riley, 2005; Suttaat,al., 2009). The basic principle of DIC is to match maximum correlation
between small zones (or subsets) of the specimen in the undeformed and deformed states. The specimens were sprayec
with black paint to obtain a random black and white speckle pattern in order to perform the correlation procedure. A
CCD camera (Sony XCD-SX910) set perpendicularly to the specimen was used for capturing the images. All images
were acquired using a 10 Zoom C-Mount lens. The images of the undeformed and deformed specimen were captured
and processed using a DIC program (home-made DIC code), in order to estimate the displacement fields. The size of the
measurement field was 1280x960 pixels and the reference and target subsets equal to 31 x 31 and 71 x 71 pixels,
respectively. The accuracy of this method is approximately equal to 0.01 pixels.

Figure 1. Experimental arrangement for pure shear.
3. HYPERELASTIC CONSTITUTIVE RELATIONSHIPS
Consider the central region of the adhesive from a rectangular thin sheet specimen, as illustrated in Fig. 2. The pure
shear occurs only in the central part of the sheet. Assuming that the material is incompressibleAie= 1, the

principal stretches can be expressedas 4, 1, = 1 and 1; = 271. Thus, the deformed configuration as a function
of a reference configuration can be written as

X1 = /11X1 y Xp = 1 andX3 = /’tI1X3 (1)

The associated principal stretches are defined as a function of initial and final ldpghs () in the stretched
direction. These expressions are given as

M=7 A= land }y == )

0

Using Eg. (2) , the deformation gradient tensor for pure $hean be expressed as

A0 0
F=[0 1 0] ©)

00 1/2
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Figure 2. Element under pure shear.

The left Cauchy-Green tensor, which is also known as Green’s deformation tensor, is an important strain measure
in material coordinates. The deformation terBpcan be written as functions of the deformation gradient tensor,

22 0 0
B = FFT = [0 1 0 l 4)
0 0 1/22

There are many forms for expressing the three scalar invariants of a second-order tensor. They can be written in
terms of the metric tensor in the undeformed and deformed states, as well as the relative stretches. The principal scalar
invariants of the left Cauchy-Green deformation tensor can be determined as

L=trB= A+ 1+1/2? (5)
I, =5 [(tbB)? — trB* = 2> + 1+ 1/22 (6)
I;=detB=] =1 ()

Numerous stress tensors have been defined in the literature. The first Piola-Kirchhoff stred? iecatied the
engineering stress (or nominal stress) because it is defined as the force per unit unstrained area. This tensor is in general
not symmetric. The Cauchy stress tensor, also known as true stress, is defined as the force per unit strained area. The
relation between these stress tensors is given by

=] 'PFT (8)

As illustrated in Holzapfel (2000) the Cauchy stress can be written in terms of the left Cauchy-Gred® tensor

42 (M WY g g W g
o= p1+2(611+11612)3 25, B )

Wherep is the arbitrary hydrostatic pressure.

Substituting Egs. (4) and (5) into (9), the principal stress component can be given by

o1 =2|(2 -5) G + 5] 10

Onthe other hand, the principal Cauchy stresses in terms of stretches are given by (Destrade and Ogden, 2005)

ow

g; zllla)"
i

11)
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or in the present case, being=0
01 =011 =0P; (12)

Considering a thin sheet under tensile load, as described by Jones and Treloar (1945) , it is possible to calculate the
work done by the external applied force taking into account the unstrained block, which gives

dW = P, dA,, with P, = g (13)

WhereF andA are the applied load and the unstrained area, respectively.
A suitable strain—energy function for incompressible isotropic hyperelastic materidis=ilcan be expressed as
aset of independent strain invariant of the left Cauchy-Green tensor B, given by

W = W[L(B),L,(B)] (14)

There are several forms of strain-energy function in the literature to describe the elastic properties of hyperelastic
materials (Marckmann and Verron, 2006; Holzapfel, 2000). This work focuses on five of the most common ones, i.e.
Mooney-Rivlin (first order), Ogden, Yeoh, Vargas and Arruda—Boyce that are implemented in several FEM
commercial codes.

These models have been chosen because they are representative, but not exhaustive, of widely used hyperelastic
constitutive equations. The Mooney model is the most used in rubber industrial development because of its simplicity
and its good representation of moderate deformations (Meenial,, 2008) and the Ogden model has been chosen for
its high versatility which allows it to fit almost any experimental data. All models have only two parameters except
Vargas model that use one parameter.

3.1 Mooney-Rivlin model

Mooney-Rivlin observed that rubber response is linear under simple shear loading conditions. The original first
order model is represented by the equation:

W = Co(I; —3) + Co1(I; — 3) (15)

Paameters G and G, are constants of the material and are determined from experimental data. They are related to
the ground state shear modulus by the equation

i =2(Cyo + Co1) (16)

Substituting expression & into Eq. (10) we obtain the Cauchy stress component.

01 = 2(/12 - %)(C10+C01) (17)
3.2 Ogden model

This model associates the strain-energy with the principal stretches according to Eq. (18) (Marckmann and Verron,
2006; Ogden, 1997).

N
W= Z B (209 4 2,% 4 2,9 — 3) (18)
n=1 n
N
1
U= fz HnQp (19)
n=1

Whereyp is still the ground state shear modulus and the material parameters should fulfilled the following stability
condition y,a, >0 ¥vn=1,N.

1133



ISSN 2176-5480

22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirdo Preto, SP, Brazil

3.3 Yeoh model

Yeoh model for a hyperelastic material is based on a representation of the strain energy density in a 3-term
expansion of the first strain invariant,(Yeoh, 1993).

3
W= Z Cio(l; = 3)* (20)

WhereC;, are material parameters and the shear modulus can be considared24y,
3.4 Arruda-Boyce model

This model is based on statistical mechanics which account for the non-Gaussian nature of the molecular chain
stretch with an effective or representative network structure (Boyce and Arruda, 2000). Furthemore, physically based
foundation of the non-Gaussian statistical mechanics netwok models provides a constitutive law that requires only two
material properties- the network chain density, N, and the limiting chain extensifilityThe continuum mechanics
invariant-based constitutive models is equivalent phenomenological representation of the microstruturally based
statistical models. The first invariang, has correlate with the average chain stretch in the network model. Thus, an
alternative expression of the “8-chain” strain energy model of Arruda and Boyce can be obtained by expanded series
polynomial, which models a rubber chain segment between chemical crosslinks as a number N of rigid links of equal
lengthl. The parameter N is related to the locking stréighthe stretch at which the chains reach their full extended
state,A,, = VN.

Their proposed strain-energy is a truncated Taylor series of the inverse Langevin function. A formulation that
retains the first five terms of this function takes on the following form:

5
o; . .
W= n) s (1 =39 1)

i=1

Whereyp is a shear-modulus like parameter and the coefficigrise

1 1 11 19 519
M= %7 20" T 050" ** T 7000”5 T 673750 (22)
3.5 Vargas model
It is a special case of Ogden model. It result from Eq. (18) by settingeN=11 (Holzapfel, 2000).
W=C+2+1;—3) (23)

Whereu = C;/2 is shear modulus
4. RESULTS AND DISCUSSION

For evaluating the principal stretches, the initial and final sizes of the small area at the central region of thin sheet
were taken into account. The size variations were determined by the DIC program. Using these results and Eq. (2), the
principal stretches were achieved. For each applied load, an image was captured and the procedure was repeated.

Experimental tests were performed in a very slow strain rate (quasi-static). This condition ensures that no effects of
viscosity on rubber are influencing stress data.

Figure 3 shows the results of full-field displacements, u(x, y) and v(X, y), achieved when a tensile load equal to 455
N is applied using the DIC method. These maps were obtained on surface area at central region of the thin sheet i.e.,
analysis region illustrated in Fig. 2. The displacement field u(x, y) has no significant variation, and v(x, y) displacement
field varies linearly with the vertical direction {)Xthat is direction of applied load.

This example was chosen to show that the u(x, y) displacement field can be neglected when compared with the v(x,
y) displacement field. Therefore, it can be considered that the deformation occurs only in the vertical direction.

1134



ISSN 2176-5480

Fernando S. Aradjo, Luiz.C.S. Nunes
Theoretical and Experimental Study of a Hyperelastic Polymer Under Pure Shear

004 135 I

£ P
éu_uz S e 125
5

d=s

& 4

y(mm) i x(mm) y(mm) - x(mm)

Figure 3. Full-field displacements obtained on surface area at central region of adhesive with applied load of 455N:
(a) u(x, y) displacement and (b) v(x, y) displacement.

Figure 4 illustrates the nominal or engineering stress as a function of stretch. Three tests were performed by means
of experimental setup. The data obtained from repeated measurements show suitable repeatability. For deformations

with stretch values higher than 1.5 it is possible to notice a little discrepancy among the stresses values. One can see that
the relationship between stress and stretch is nonlinear.

0 1 1 1 1

1 1.2 14 16 1.8 2

'S
Figure 4. Diagram of nominal stress versus stretch for three tests.

In order to compare both nominal and true stresses, Egs. 13 and 12 were used. Considering values of loads
applied to the specimen and the initial area, the nominal stregsig®btained according to Eq. 13. Thus, the
Cauchy stressd,) is determined using the principal stretch and nominal stress as stated in Eq. 12. The mean results
are depicted in Fig.5. It is possible to observe the linear relationship between true stress and principal stretch. For
small deformations both nominal and true stresses coincide. On the other hand, for large deformations Cauchy stress
is higher than nominal stress. This is due to Cauchy stress takes into account the strained area.
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Figura5. Nominal and true stresses versus stretch.

In order to compare the predictions of resulting theoretical strestretch relations with experimental data o
pure shear, the stragmergy function was taken into account. It is clear that the material properties must be i
under changes of observer and leadditions. For that rson, the values of shear modulyu¥\{ere estimatec

Five hyperelastic constitutive egfions have been choseMooney, Yeoh, Arrudd&oyce, Ogden and Vargas. The
first three depend on the invariants of left Cauchy—Green tensor, Brhereas the two lasne is written in terms of
principal elongationsThe material parameters from each model are estimated using Le\-Marquardt method,
which is a standard techniqueed to solve nonlinear least squéeproblems(Levenberg, 1944; Marquardt, 1963; G
et al., 1981).

A comparison betweseldittings obtained from different modelsillustrated in Figs. @&ndFigure 7 for Cauchy stress
and nominal stress, respectivelnefinal values of shear modulus and RMS for allfited models are summarized
Table 1. Parameters; @re constants of the material esweredetermined from experimental data. They are relatt
the ground state shear modulus by the equations repoisection 3

Among the evaluatedhodels, the most accurate forms result 1 the Ogden, Yeohand Arruda Boyce. These
models are substantially equivalent in this study and they give a good approximation of experime

Fitting for the Ogden model givesslightly betteffitting with an RMS of 0.00810MPa and &u equal to 0.5251
MPa.

Considering the first order Mooney potential form,fitting gives the result of 0.5164 MPa shear modulus
RMS of 0.0108MPa and thus it is able to describe with a gopproximation. On the other hanis evident that
Vargas model fittings less accurate thethose ons. Results are an RMS of 0.04583 MPa and a valiu equal to
0.5875 MPa.
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Figure6. Curve fitting of Cauchy stress experimental data.
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Figure7. Fittings of Nominal stress experimental data

Table 1 Values of the hyperelastic energy paramefitted on experimental dafeom all homogeneous te.

Modelo Constants Shear modulugy [MPa] RMS [MPa]
Mooney Cy0 =0.0480:, Cy; = 0.2102 0.5164 0.01085
Yeoh Cic =0.26Z, Gy =-0.001568 0.524 0.008167
Arruda-Boyce N =2830,u = 0.5176 0.5176 0.008202
Ogden 1 term a; = 1.9,u; = 0.5527 0.5251 0.008107
Vargas C1=1.175 0.5875 0.04583

5. CONCLUSIONS

The aim this work was to investigate mechanical behavior of a hypergtia material undepure shear and
theoretical models were fitted to the measured data of stress versus amount of shear in order to determine
shear modulus. It has &e observed from experimental data that stress and stretch relationship is n In order to
find a best model to the experimental data, five mchyperelastic energy density modelasevaluated in this work
and implemented into Matlab routindshe Ogden and Yeoimodels were found to be the most accurate. Both of
give a good description of the material with concordance of the ground state shear modulus and with The
initial shear modulus varied frof.5164 MPathrough 0.5875 MPa obtained froMooney and Vargas models,
respectively.
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