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Abstract. The contribution of this study is a simple strategy to model skeletal muscles associated with bones. The 
simplicity of our approach is related to the introduction of active muscular fibers inside the soft tissue without 
increasing the number of degrees of freedom of the whole continuum. The skeletal system is modeled (to present the 
idea) as a two dimensional reinforced elastic solids developing both small and large deformations. Fibers are freely 
spread over de domain without necessity of node coincidence and without increasing the number of degrees of 
freedom. Active and passive fibers are stated before the application and a non-linear approach is used to solve the 
desired mechanical problem. Numerical examples are employed to demonstrate the potential of the proposed 
methodology and future developments are discussed. 
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1. INTRODUCTION 
 

Various important and high standard works related to the mechanical behavior and analysis of skeletal muscles are 
present in literature. Selecting some recent works is a hard task; however we should mention references Tang, et al., 
(2009), Böl and Sturmat (2011), Böl (2010) and Lu, et al., (2010), in which one can find a very good state of art related 
to the subject. Following Tang, et al., (2009), there are two basic ideas from which skeletal muscle models come from: 
a phenomenological model originated from Hill (1938) – apud Tang, et al., (2009) and a biophysical cross-bridge 
model derived by Huxley (1957) – apud Tang, et al., (2009). Hills-based model are related to the macro behavior of 
muscles while Huxley-based models were built upon biochemical, thermodynamic and mechanical experiments for 
describing muscle at the molecular level. Huxley-based models have been mainly used to understand the properties of 
the microscopic contractile elements. The intention of this work is to modestly contribute with the macro-mechanical 
modeling of skeletal muscles, therefore Huxley-based models are not the focus of our work.  

The challenge is to generalize the pioneer one-dimensional Hill model to general 3D models and applying them in 
FE models to analyze complex geometries. Following Böl and Sturmat (2011), to incorporate further more complex 
geometrical aspects of skeletal muscles, planimetric and 3D models were designed (see, e.g. Blemker and Pinsky (2005) 
and Tsui, et al., (2004)). Most of these continuum-based models use a macroscopic description of the passive muscle 
behavior (soft tissue) combined with a 1D, possibly micromechanically motivated, modeling of the active muscle fibres. 

The way followed here is similar to the one proposed by (Böl and Sturmat (2011) and Lu, et al., (2010)), that is, as 
earlier mentioned by Van Leeuwen (1992), to split the muscle behavior into a passive and an active part. The proposed 
concept is based on the idea of representing the passive part by means of an assembly of non-linear fiber elements. In 
each fiber element, the force-stretch behavior of a certain group of collagen fibres is implemented. To incorporate 
muscle activation, similarly to passive fibers, active muscle fibers are also modeled as non-linear one dimensional 
elements and embedded in the continuous. 

The novelty of our work is the strategy followed to embed these fibers into the soft tissue (continuum). Differently 
from Tang, et al., (2009) and Böl and Sturmat (2011), our fiber elements do not contribute to unit cells (solid finite 
elements) but directly to the whole continuum, that is, the internal force developed by fibers does not depends on the 
homogeneous muscle discretization to be transmitted, but are directly transmitted from fibers to the soft tissue.  

The 2D solid finite element applied here to discretize the continuum is isoparametric of third order. Curved high 
order fiber elements are developed to be embed in the continuum in to simulate muscle fibers. The adopted nodal 
parameters are positions and the Saint-Venant-Kirchhoff constitutive law is chosen to model, in a simplified way, the 
soft tissue behavior (Bonet, et al., (2000), Coda and Paccola (2007), Ciarlet (1993) and Ogden (1993)). 

Muscular fiber elements are introduced in soft tissue by means of nodal kinematic relations. This strategy directly 
ensures the adhesion of fibers nodes to the continuum without increasing the number of degrees of freedom and without 
the need of nodal matching (Vanalli, et al., (2008) and Sampaio, et al., (2013)). To solve the resulting geometrical 
nonlinear problem we adopt the Principle of Stationary Total Potential Energy, Tauchert (1974). From this principle we 
find the nonlinear equilibrium equations. The Newton-Raphson iterative procedure, Luenberger (1989), is used to solve 
the nonlinear system. Our level of application is limited to 2D models and two examples are shown to demonstrate the 
possibilities of the technique. 
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2. COUPLING KINEMATICAL RELATION 
 
As mentioned at introduction it is the intention of this paper to collaborate in the analysis of muscles by the 

presentation of a general and simple way to introduce fibers inside an elastic continuum. The requisite to start this 
procedure for curved fibers and curved (2D for instance) solid elements is to know the solid dimensionless coordinates 
related to fiber nodes coordinates, see Fig. 1. 
 

 
 

Figure 1. simple illustration of a 2D domain with general immersed fibers 
 

This is done solving the pair of dimensionless solid variable 1 2
p p( , )   associated to the physical initial fiber node 

position in the following nonlinear system, 
P P P l
i l 1 2 iX ( , )X             (1) 

where l  are the shape functions of the solid element, P
iX  are the known (initial) coordinates of fiber nodes (generated 

independently of solid mesh) and l
iX  are the know solid nodes coordinates. To solve Equation (1) one expands it in 

Taylor series until the first order and starts with a trial dimensionless coordinate, 1 2
pt pt( , )  , i.e.: 

Pt Pt
1 2

P Pt Pt l l 1 2
i l 1 2 i j

j ( , )

( , )
X ( , )X

 

     



 


 or P Pt

i i ij jX X H      (2) 

in which Pt
iX  is a trial position of the fiber node calculated from the solid element geometry and the trial dimensionless 

coordinates and ijH  is a two dimensional matrix. The correction of the trial dimensionless coordinates i  is 

calculated solving the following linear system of equation: 
P Pt

ij j i iH X X             (3) 

The procedure is a simple and fast Newton-Raphson nonlinear solver that relates all fiber nodes to the connected 

solid element revealing the pair of dimensionless variables 1 2
p p( , )  . From this information one also knows the 

current position of fiber nodes as a function of solid nodes positions, i.e., 
P P P l

i l 1 2 iY ( , )Y              (4) 

where l
iY  are the current positions (unknown) of solid nodes. Equation (4) ensures the connection among nodes of 

fibers to the matrix. Moreover, as Equation (4) writes fiber nodes as function of solid nodes what enables to write the 
Helmholtz free energy of a reinforced solid as a function of solid node only, that is without the additional fiber degrees 
of freedom. 
  
3. TOTAL HELMHOLTZ FREE ENERGY AND ITS DERIVATIVES 
 

The Helmholtz free energy stored in a reinforced body is the sum of the strain energy stored in the matrix and the 
fibers: 

mat fU U U             (5) 
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where matU  is the strain energy stored in the 2D solid finite elements used to discretize the matrix and fU  is the strain 

energy stored in the fiber finite elements. Therefore, the internal force at a node   in direction  , considering both 

the fiber and matrix contributions, is determined using the conjugate energy concept: 

mat f fint int/ mat(U U ) U
F F

Y Y
 
  

 

  
  

 
        (6) 

in which Y 
  is a degree of freedom related to the solid discretization. 

In our formulation fU  is written as a function of fiber degrees of freedom P
iY , see Vanalli, et al., (2008) and 

Sampaio, et al., (2013)). Therefore, using the chain rule via Equation (4), one writes: 
P l

P P P P P Pi i
l 1 2 i l l 1 2 i 1 2

Y Y
( , ) ( , ) ( , )

Y Y     
 

            
  

 
     (7) 

If the fiber node belongs to the solid element and direction   (solid) is equal to direction i  (fiber), expression (39) 

results P P P
i 1 2Y / Y ( , )

      , otherwise it results zero. Therefore for a fiber node belonging to a general element 

results:  
P

f f P P Pint / fi
1 2P

i

U U Y
( , )F

Y Y Y   
 

  
  

 
  

        (8) 

Using (7) and (6) one writes: 
int int/ mat P P Pint / f

1 2F F ( , )F 
               (9) 

In the solution process the second derivative of the Helmholtz free energy is also important, the fiber contribution, 
following the chain rule, is given by: 

2 2 2 2

2

f f f f f f
f f f f

f f f f f f
w

f f
f

f f

U U U UY Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y

U Y Y

Y Y Y Y

     
     

             
            

 
 

   
   

        
   

             

  

   

  (10) 

 
4. EQUILIBRIUM EQUATION AND SOLUTION PROCESS 
 

In this section, the strategy adopted to solve the reinforced 2D solid geometrically nonlinear equilibrium is 
described.  

The nonlinear analysis starts writing the total potential energy as follows: 

mat fib(Y ) U (Y ) U (Y ) (Y )            (11) 

where   is the total potential energy of the system, U  is the Helmholtz free energy including matrix and fiber 
contributions written regarding solid nodal positions and   is the potential energy of external conservative applied 
forces given by: 

j jF Y              (12) 

where jF  is the vector of external forces and jY  is the current position vector. 

The Principle of Stationary Total Potential Energy, Tauchert (1974), is applied writing the equilibrium equations as 
the derivative of total energy regarding nodal positions (2D solid for instance), as: 

mat fib int
j j j j

j j

(U U )
g F F F 0

Y Y

  
     
 

       (13) 

where int
jF  is the internal force vector or the strain energy gradient vector calculated regarding solid nodal positions, 

Equation (6). The nodal current positions are the unknowns of the problem, so, when adopting a trial position in 

Equation (13) jg  is not null and becomes the unbalanced force vector of the Newton-Raphson procedure, Luenberger 

(1989). Expanding the unbalanced force vector around a trial solution 0Y , one has: 
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0

j 2
j j k j

k ( )

g
g ( ) g ( ) Y O 0

Y



   


0

Y

Y Y         (14) 

which can be rewritten, neglecting higher order terms as: 

   
0 0

11
2

1j mat fib0 0 0
k j j kj j

k k j

g (U U )
Y g ( ) g ( ) H g

Y Y Y





           

        Y Y

Y Y Y   (15) 

where kY  is the correction of position and 
0

2

kj
k j

U
H

Y Y



 

Y

 is the Hessian matrix or tangent stiffness matrix. 

The trial solution is improved by: 
0

k k kY Y Y             (16) 

until kY  or jg become sufficiently small. The load level is incrementally applied in order to describe the equilibrium 

path of the analyzed biomechanical structure. 
 
5. EXAMPLES 
 

As mentioned before, the proposed concept to model passive and active behavior of muscles is splitting the muscle 
in soft tissue and fibers. Fibers can be passive or active. Passive fibers have simple elastic behavior, for which a 
stretching results in stress response, while active fibers receive a cerebral impulse that indicates its’ shortening. These 
fibers are embedded in the continuous (soft supporting tissue) through the special strategy described in this paper. This 
technique does not increase the number of degrees of freedom.  
 
5.1 Muscle contraction - active muscular fibers 
 

This first example illustrates the behavior of active muscular fibers inside the supporting tissue (soft), simulating a 
muscle contraction. The supporting tissue is discretized by 5700 cubic triangular elements and a total of 30 muscular 
fibers (2790 cubic fiber elements), each one with 0.1 of area, are considered in the model, see Fig. 2. The elastic 
modulus of the tissue and the fibers are 15000 and 150000 respectively.  
 

 
  

Figure 2. Supporting tissue and fibers 
 

The horizontal and vertical displacements are restricted at the ends of the tissue. The results were obtained applying 
constant strain of 0.5% in each fiber of the muscle. The contraction of the fibers generates reaction forces at the 
restricted points, whose resultant value in horizontal direction is 2182.27. 

Figure 3 shows the displacement distribution of tissue. As expected there is a shortening in transverse direction, 
related to the necessity of curved fibers become straight. 

 

ISSN 2176-5480

9230



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

(a) (b) 
Figure 3. Tissue displacements – (a) horizontal and (b) vertical directions 

 
Fig. 4 shows the stress distribution in the soft tissue referred to the fiber contraction. As one can see, following 

horizontal direction, the extremities suffers severe tension while the center suffers moderate compression. Following 
transverse direction the central region suffers moderate compression while extremities suffer a general tension, 
reflecting the arch effects caused by initial geometry. 

 

(a) (b) 
Figure 4. Stress distribution – (a) horizontal and (b) vertical directions 

 
5.2 2D Arm modeling 

 
This example is an illustrative 2D arm modeling. The supporting tissue and bones are discretized by 640 cubic 

triangular elements, see Fig. 5a. 
 

 
(a) Supporting tissue and bones mesh (b) Fibers inside the domain 

Figure 5. Supporting tissue, bones and fibers 
 
A total of 70 muscular fibers are considered for the biceps and triceps as depicted in Fig. 5b (35 each). The area of 

each fiber is 0.1. 
The modeling is done applying a horizontal force (320) at the bone connection with the hand. The force is applied in 

two ways: from left to right (moving away the arm from the forearm) called here “distal force” and from right to left 
(approximating the arm and the forearm) called here “proximal force”. 

The first, “passive modeling”, considers all tensioned fibers passive with a very high elastic modulus (300000) while 
compressed fibers have small elastic modulus. The second, “reactive modeling” considers a very low elastic modulus 
for all fibers (300); however fibers that are subject to tension (elongation) are considered actives, i.e., the muscle 
contracts in a way to cancel the detected strain (sensor and actuator). This contraction is always applied at the end of 
each step, all models employ 1000 steps. 

The elastic modulus of the bone was considered as 715 10x .  
Figure 6 shows a comparison between passive and reactive models for distal force and Fig. 7 shows a comparison 

for the proximal force. 
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(a) Passive modeling (b) Reactive modeling 

Figure 6. Distal force – (a) Passive, (b) reactive 
 

 
(a) Passive modeling (b) Reactive modeling 

Figure 7. Proximal force – (a) Passive, (b) reactive 
 
 
As expected, muscles compensate the small elastic modulus by severe contraction. Figure 8 shows the normal force 

in fibers for proximal and distal reactive modeling. As expected, the signal of muscular fiber forces are in acoordance 
with the global achieved equilibrium. 

 
 

(a) Proximal (b) Distal 
Figure 8. Fibers forces in reactive models 

 
6. CONCLUSIONS 

 
A general strategy to model skeletal muscle has been proposed and successfully tested. This scheme is very 

promising due to its generality and easy way of using. The direct imposition of contraction in muscular fibers 
guarantees a high stiffness to reacting and active muscles when comparing with much stiffer passive fibers. The 
combination of contracting fibers, passive fibers and a passive supporting tissue reveals to be an efficient and simple 
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way to model skeletal muscles. Further works will include: a 3D implementation, a better constitutive model for active 
and passive fibers as well as for the supporting tissue. 
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