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Abstract. Pipe line is a widely used mean for natural gas and petroleum product transportation. Actually, petroleum is 
an essential way to provide energy and definitely plays an essential paper in economy. In the other hand, the leak of 
petroleum means financial and environment injure. Such occurrence may be caused by pipeline material degradation 
or external load, which leads mechanical stress to exceed material rupture limit. The material degradation could be 
caused by corrosion, in which the pipeline wall thickness is reduced, producing an irregular defect. Consequently, 
producing stress concentration effect and lead the pipe to a rupture pressure less than the original pressure. By the 
other hand, external loading could be instigated by earthquake, soil movement, or during the installation. For these 
cases, it is necessary to carry out an analysis a priori, to guarantee that the pipe will resist those loads. The pipe 
integrity assessment can be done by numerical calculation, by using Finite Element Method. Such methodology is 
widely used to evaluate solid behavior once it is subject to an external loading. This method is able to assess nodal 
displacement, and then calculate strain and stress. This work has the purpose to carry out a dynamic analysis 
considering pipeline subjected to external loading and free of corrosion. By this way, a local analysis is unnecessary, 
and only the global analysis will be done. From this point of view, in order to simplify the numerical solution, 
hypothesis of Euler Bernoulli beam will be adopted, and this beam model will be simulated by the use of a beam 
element of 2 nodes. For the dynamic solution method, implicit method will, together with HFEM and GFEM.  
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1. INTRODUCTION  

 
 Wave propagation in solid could be induced by different type of loads, which can be classified in practice as 
either conventional or impact loads. Impulsive loads are characterized by an instantaneous rise in magnitude followed 
by a rapid decrease during a very short interval of time. And most frequently, it is applied over a small area of the body.  
For conventional loads, such as harmonic or static loads, each part of body influences stresses and strain that occur in 
other parts of the body. However, under impact loads, stresses and strains are localized in the region at vicinity of the 
point where the impact load was applied.  
 When an elastic medium is deformed, usually, two types of waves may be propagated, wave of dilatation and 
waves of distortion. In addition to these two types of elastic waves, there are elastic waves which are propagated along 
the surface of a solid. These surface waves, known as Rayleigh waves have an important paper in seismic phenomena.  
 In 1972, one of the most pioneer works in the area of elastodynamics was presented by Goudreau and Taylor. 
In such work, several aspects of the differential equation governing the dynamic behavior were analyzed. As well as, 
different solution methods were analyzed, including implicit methods like Newmark and Houbolt, and explicit method. 
One of the merits of this study was to carried out an analysis of numerical error inherent in the method of discretization 
in time and in space discretization method. The stability condition has been intensively researched and tested in several 
examples. With the methods used by the authors, it was possible to capture the passage of wave using beam element. 
Wave profile was compared using different methods of solution. In 1977, Hilber et. al. have developed a method, later 
known as HHT, based on implicit Newmark method, in which they have introduced an adjustable parameter to control 
numerical dissipation. The method was developed with the purpose to provide an unconditionally stable solution for the 
equation of dynamic equilibrium. According to the authors, the Newmark method presents numerical oscillation for 
second and third order of derivative in time of displacement. In this case, it would be desirable to develop a method 
which aims to reduce numerical oscillation, but without affecting the vector of displacement. The HHT method is 
simple to program for those who already has Newmark algorithm implemented, only one parameter is introduced to 
calculate independent parameters of Newmark. According to stability study the authors, this parameter varies between 0 
and 3/1 . In 1983, Zienkiewicz et. al. have presented an alternative method of finite element solution, later known as 
hierarchical finite elements method (HFEM). The presented formulation was based on result enrichment by adding 
hierarchical polynomials without affecting the original shape function, deducted by Lagrange polynomial. In 2004, 
Solin et. al. have published a book dealing with HFEM using various categories of hierarchical polynomial as 
enrichment shape functions. They are functions of Legendre, of Lobatto, of Kernel, and among the others. In 2009, 
Arndt has developed a study on the performance analysis GFEM dynamic frame structure, more specifically, the natural 
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frequency analysis of structure. In this study, several methods of refinement were analyzed and compared, such as h, 
and adaptive. The work began with the function analysis of enrichment for bar and later extended to Euler-Bernoulli 
beam. The main contribution of this research was the proposed enrichment sine functions, which have a similar curve 
shape in comparison to displacement curve. In 2009, Monteiro developed a new catcher to be introduced to 
discontinuous finite element method in time, in order to catch the wave passage in the solid. The time discontinuous 
finite element method shows to be efficient to identify the passing wave, even when the displacement or speed curve 
behaves as degree function in time. At the singular point, the conventional finite element method was showing results 
with numerical oscillation to, even using efficient implicit method. However, for time discontinuous finite element 
method, such numerical oscillation was not observed either in the beam element, or in the 2D quadrilateral element. In 
2012, Torri has developed a study focused on the analysis of dynamic bar, beam Euler - Bernoulli, two-dimensional 
wave propagation and state of stress by using GFEM, HFEM and FEM with quadratic shape function. In this work, 
these methods were compared to determine the natural frequency of the structure, and GFEM was more accurate than 
other methods. 
  
2. GENERALIZED FINITE ELEMENT METHOD AND HIERARCHICAL FINITE ELEMENT METHOD 
 

The conventional FEM is based on polynomial shape function, such as Lagrange or Hermite function, for a 
field of nodal unknown variables. This type of formulation has some inherent disadvantages once it is desired to 
increase the order of approximation of the element. In this case, for addition of nodal shape function, all the other 
functions, already existents, should be changed completely. To avoid this problem, it is possible to define shape 
functions which once introduced into the approximation, doesn’t have to change the shape functions previously defined, 
from the conventional formulation. By presenting this important feature, these shape functions are called hierarchical 
shape functions. Beside the conventional nodal shape function, other enrichment shape functions and their 
corresponding unknowns value no longer have the meaning of physical variable, as the conventional nodal function. 
The formulation of hierarchical finite element method (HFEM) differs from the conventional formulation due to the use 
of hierarchical shape functions of roder defined by user (Zienkiewicz, 1983). These functions are introduced into 
conventional finite element method in order to make the refine in solution. In elasticity problems, the hierarchical 
formulation consists in introducing new modes of deformation, by increasing the number of hierarchical shape function, 
as it is used in the interpolation of the physical variable (Zienkiewicz, 1983). The HFEM in its traditional formulation 
uses Lagrange polynomials as shape functions. This is because these polynomials are relatively easy to build and meet 
requirement of FEM, which can easily applied with boundary conditions. However, the Lagrange polynomials of lower 
order are all different from Lagrange polynomials of higher order. This provides difficulties once the approximation is 
improved by increasing the order of the polynomial approximation, in this case, all polynomials should be obtained 
again. The idea is to use HFEM space approximation that is hierarchical. That is, by increasing the order of 
approximation of n to 1n , where functions of order n don’t have to be changed. The construction of hierarchical 
polynomial approximation spaces was described in detail by Solin et al. (2004). In this case, a rather simple way of 
building spaces hierarchical approach is to use Lobatto polynomials instead of Lagrange polynomial as local 
approximation functions.  

For displacement in formulation of bar, Lobatto’s function was used (Solin et. al. 2004), as given in below: 
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In the case with beam, that involves bending problem, Bardell’s function was used (Bardell, 1991): 
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 The Partition of unity method (PUM) presented by Melenk and Babuska (1997) was a foundation for other 
developed method in the solution of boundary value problem. The GFEM, or PUM, according to Barros (2002), was 
proposed independently by: 
• Babuska and colleagues using the name of special finite element method, and latter as Partition of Unity Method 

(1997). 
• Duarte and Oden (1996) hp cloud method, Oden et al. (1998) as a new option method of hp clouds. 
 The employment of the current name as the generalized finite element method was made by the first time in 
Melenk (1995, ap ud Barros 2002). The strategy used in the GFEM is to employ the shape functions of the FEM as PU. 
For two dimension elasticity problems, for example, are employed Lagrangian bilinear functions. The size of the 
original space of finite elements is then extended through the enriched function obtained by the hp clouds method. In 
other words, the GFEM is the method in which enriched functions are obtained from PUM and these functions are 
combined with the standard EFM polynomial in order to evaluate nodal unknown variable. The advantage by using 
PUM is the possibility to obtain enriched function that are representative of the phenomenon in question, these enriched 
function not necessarily have to be polynomial functions or other already know mathematical function. In the case of 
fracture, the function for enrichment could be a function already known for displacement evaluation. In the case of 
dynamic analysis, the enriched function can be adopted as a function of displacement in time, such as sine or cosine 
function. Such consideration allows a wider range of choose for local approximation spaces, and it can be used without 
changing the basic premises of FEM. An example for PU application is the shape functions, such as Lagrangian 
polynomial, where the clouds are formed by a set of finite elements that contribute to nodal values. This can be seen 
when analyzing these functions of Lagrange polynomials of order n=1. From figure 2.1 it can be noted that each 
function i  is defined inside two adjacent finite elements, except in the case of the function 1  and 1eN . The 

function, 2 , for example, is defined at the junction of the first to the second finite element of figure 2.1. Therefore, in 
general, each subcover is given by the region defined by two neighboring finite elements. Consequently, the PU given 
by linear functions of the FEM based on Lagrange is as shown in figure 2.1, where each finite element is defined at the 
intersection of two subcover  i .  
 
 

                             
Figure 2.1 
 
 From above point of view, the equation for unknown nodal displacement is given: 
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Where,  

 NqjNNqj

def
T bbubbuU ......... 11111                               (2.4) 

Is the vector of nodal unknown variable, iu , with unknown field variables, ijb , which appears in the formulation due to 
enrichment function.  
  And,  

 NNqjNNNqj

def
T LLLL  ......... 1111111                  (2.5) 

Is the vector with conventional FEM shape function i , and enrichment function, ijL , derived from PUM.  
 From previous works of Arndt (2010), some enrichment function was studied and analyzed for the case of 
dynamic analysis. These functions will be employed for this work and applied for several examples in comparison to 
HFEM and conventional FEM. The proposal of Arndt for bar formulation enrichment is: 
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And for beam formulation, including bending effect, Ardnt (2010) made proposal as: 
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3.  HHT METHOD 
  
 In order to provide second order accuracy and unconditional stability, Hibert et. Al (1977) have developed a 
method based on Newmark method, by introducing new parameters into conventional parameters. Such new parameters 
provide the possibility to control numerical dissipation during the solution. The development made by Hilbert et. al. will 
be presented below. 
 Consider the original dynamic equation for vibration without damping. A new parameter named alfa was 
introduced into equation without affecting equation equilibrium.  
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The displacement and velocity vector will be evaluated according to conventional Newmark method. With initial 
condition, these equations will be:  
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 According to study made by Hilbert et. al. (1977), when   assumes a positive value, then the numerical 
dissipation can not by efficient, and such parameter acts as a viscous linear damping ratio. For this reason, it was 
suggested the use of parameter   as a negative value and varies between 0 and -1/3. From the analysis of Hilbert et. al. 
(1977),   within this gamma of value will present numerical stability and dissipation. Once   is introduced into 
Newmark independents parameters, it will be: 

  41 2   and   21                                                        (3.10) 
 
4. APPLICATIONS 
  
 Using enrichment function proposed by Arndt (2010) and HHT method with   equal to -0.1, several 
examples were analyzed with mechanical properties E = 207 GPa, density = 7830 kg/m3. 
 
4.1 Example: Bar subjected to static load  
 
 Consider a situation represented by figure 4.1, where the bar of 75 mm of external ratio and 70 mm of inner 
ratio, 1 m of length is subjected to a static load applied to free end of magnitude 1000 N. The analysis was carried out 
by using Newmark algorithm and HHT algorithm with parameter   equal to -0.1. During the analysis, 5000 time step 
was adopted with 1e-6 within each interval.  
 
 

 
Figure 4.1 Bar subjected to static loading at the end. 

 
The analytical solution for transversal displacement, velocity and acceleration, proposed by Nowacki, are shown at 
below: 
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Where Ec  . 
In this analysis, different element formulation was put into comparison in order to study its behavior once it was used in 
different solution algorithm. The different element formulation is GFEM, HFEM and conventional finite element using 
first order (FEM) and second order (QFEM) Lagrange element. And for solution algorithm, it was considered the 
Newmark linear acceleration (L) and average acceleration (C), as well as the HHT method. The result of such 
comparison is shown at below. 
 From the figure 4.2, which is showing displacement curve, these methods have shown an acceptable results in 
comparison to analytical solution proposed by Nowacki. From observation made above, it is possible to say that the 
Newmark method doesn’t present an acceptable behavior in first and second order of time derivative. But the next 
question was which element formulation has more stable behavior by using HHT method. In the figure 4.3, the velocity 
singularity was observed and all finite element formulation was capable to identify. But some of formulation presents 
numerical oscillation at the vicinity of singularity point. By making a zoom in velocity degree curve, figure 4.4, in 
which the analytical solution presents a mathematical phenomenon known as Gibb’s effect at singular point. While 
finite element method enriched by hierarchical Lobatto function and first order Lagrange element present numerical 
oscillation at the same singular point. But, the same phenomenon wasn’t observed in GFEM and second order Lagrange 
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element, especially for GFEM, in which the numerical oscillation could be considered as negligible. By making a zoom 
in figure 4.2, the figure 4.5, only with HHT method results, it is possible to observe that GFEM and second order 
Lagrange element doesn’t present discrepancy at time, while HFEM and FEM conventional have such behavior.  
  

 
Figure 4.2 Displacement curve of example 1 evaluated by several different methods. 
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Figure 4.3. Velocity curve of different methods by using HHT. 

 
Figure 4.4. A zoom of figure 4.3 at the discontinuity of velocity curve. 

ISSN 2176-5480

9145



Y. S. Hsu, and R. D. Machado. 
DYNAMIC ANALYSIS OF PIPE AS EULER BERNOULLI BEAM WITH GFEM AND HFEM 

 
Figure 4.5. A zoom at the peak of displacement curve. 

 
4.2 Example: bar subjected to impact load 
 
 This example deals with the bar that has same mechanical and geometrical properties as shown by example 1. 
In this case, an impulsive loading was applied to the free end with time interval 1x10-6s. In this example, only HHT 
method was employed due to the reason presented in the previous example. The figure 4.6 shows the displacement 
curve as degree function, due to the phenomenon produced by impulsive load applied to the free end. This type of load 
introduces more numerical instability as it presents singular point along the time. Even with HHT method, several finite 
element formulations present numerical oscillation at the displacement degree. However, the GFEM shows reasonable 
accuracy, as shown by figure 4.7. While other element formulation present numerical oscillation once approximation 
the singular point, but GFEM has more stable behavior. This type of stability is particularly desirable, due to the fact 
that the strain could be evaluated with more accuracy.  
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Figure 4.6 Velocity curves of several methods by using HHT method. 

 
Figure 4.7. Displacement curves of several methods by using HHT method 

 
4.3 Example: beam subjected to initial displacement 
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This example work with an example presented by Torri (2012), with material properties chosen to provide 

smEc /1  . The length of bar is 1 m and has both end clamped, as show by figure 4.8. The initial 
longitudinal displacement is shown below, with maximum value of 0,25 in the middle of bar. The result for comparison 
of Newmark linear acceleration method and HHT method will be show below.  
 

 
Figure 4.8 

 
 As it was demonstrated in previous example, for continuous function as bar behavior, all element formulation 
has presented reasonable result and accuracy, as it can be observed in figure 4.9 (a) and (b). By the other hand, for 
discontinuous function, as velocity, all element formulation has presented numerical oscillation, even with GFEM in 
this case, as in figure 4.9 (c) and (d).  Even with HHT method, the GFEM presents numerical oscillation, especially in 
the singular point. As it is know, the velocity is derivative of displacement in time, it is reasonable to expect that, even 
the displacement curve was remarkably attained, but the derivative produce discontinuity in this case, in which an initial 
displacement was introduced and it is similar to have an impulsive loading at the beginning of analysis.   
 

 
(a) Displacement curve by using Newmark 

 
(b) Displacement curve by using HHT 

 
(c) Velocity curve by using Newmark 

 
(d) Velocity curve by using HHT 

Figure 4.9Displacment and velocity results by using different methods of solution.  
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5. CONCLUSIONS 
  
 By using hierarchical e generalized finite element method, the elastodynamics problem was analyzed and 
results of several cases were presented. The results show that HFEM and GFEM have remarkable behavior once the 
HHT was adopted. Especially, once the singularity problem was encountered, such as velocity curve in the case of bar 
subjected to impact. In the other hand, once the Newmark algorithm was adopted, HFEM and GFEM present numerical 
oscillation and have behavior such as other conventional finite element method.  
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