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Abstract. : Viscoelastic materials have been extensively used for the purpose of passive vibration mitigation in various 
types of mechanical systems. In this paper, the authors investigate the use of those materials in aeroelastic systems and 
evaluate the influence of the viscoelastic behavior on flutter speeds. Viscoelastic elements are introduced to replace 
traditional elastic springs associated to heave and pitch motions of a typical section model. The equations of motion of 
the aeroelastic system are modified to account for the dependence of the viscoelastic behavior on frequency and 
temperature, by using the concepts of complex modulus and shift factor. The aerodynamic forces and moments are 
modeled by using Theodorsen’s method.  The results of numerical simulations enable to assess the influence of the 
addition of viscoelastic elements to the airfoil support and the influence of temperature on flutter speed.   
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1. INTRODUCTION 
 

Viscoelastic materials have frequently been used for the mitigation of vibrations in various types of mechanical 
systems, such as buildings, automobiles, airplanes and industrial equipment (Samali and Kwok, 1995; Rao, 2001). The 
main advantages provided by such strategy are inherent stability, typical of passive control approaches, and moderate 
installation and maintenance costs. However, the viscoelastic behavior entails some modeling difficulties, especially 
due to the dependence of the dynamic behavior of those materials with respect to a number of operational and 
environmental factors, among which the vibration frequency and temperature are the most relevant (Jones, 2001). As a 
result, evolved models and specialized experimental procedures are necessary for the accurate prediction and 
characterization of dynamic systems containing viscoelastic materials. 

On the other hand, techniques of aeroelastic control have received a great deal of attention from the aerospace 
community in the quest for increased safety margins and improved operational and cost effectiveness. Most of the 
reported studies have addressed active approaches (Song, Feng-Ming, 2012). Surprisingly enough, few works have 
investigated the use of viscoelastic materials as a passive strategy of aeroelastic control. 
 In this paper, the influence of viscoelastic damping on flutter speeds of is addressed. For this purpose, a typical 
section model of two degrees-of-freedom (pitch and heave motions), containing viscoelastic resilient elements is 
proposed. Based on the concept of complex modulus and reduced frequency, these elements are modeled as frequency- 
and temperature-dependent complex translational and rotational springs.  Using Theodorsen’s aerodynamic model, the 
equations of motion of the aeroviscoelastic system are derived. Stability analysis is performed using the classical K-
Method coupled with an optimization routine. The simulation results enable to verify the possibility of increasing the 
flutter velocity by the inclusion of viscoelastic elements. 
 

 
2. MATHEMATICAL MODELING 

 
2.1 Derivation of the aeroelastic model 

 
 A typical section model with two degrees-of-freedom, h (heave, positive downwards) and  (pitch, positive 
clockwise) is assumed as illustrated in Fig. 2. Also indicated is the aerodynamic center AC, located at one-quarter of the 
chord. The positions of the elastic axis EC and the center of mass MC are identified, respectively, by the 
nondimensional parameters a and e, multiplied by semichord b. Moreover, hk e k designate the translational and 

rotational rigidities of the elastic suspension and U  designates the airflow velocity. 
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Figure 1 - Typical section aeroelastic model of two degrees-of-freedom 

 
 Under these conditions, the equations of motion of the aeroelastic system are given as:  
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where am is the mass of airfoil;  S and I are the static moment and the moment of inertia of the airfoil with respect 

to elastic axis. Moreover, L is the lift and M  is the aerodynamic moment, both generated by the airflow. Assuming 
unsteady flow, the expressions for these aerodynamic loads are: 
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where the Theodorsen Function  C k  is a combination of Bessel functions of first and second types given by 

(Bisplinghoff, 1996; Fung, 1969): 
 

 

 

 

0 165 0 335
1 0 5

0 045 0 30
1 1

0 165 0 335
1 0 5

0 041 0 32
1 1

. .
C k , k , ,

. .
i i

k k
. .

C k , k , .
. .

i i
k k

   
 

   
 

  (3) 

 
In the equations above, the parameter k indicates the reduced frequency, defined as: 
 

 
b
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A classical flutter analysis is conducted by assuming harmonic motions with frequency , as follows:  
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 As a consequence, the aerodynamic loads are also harmonic with the same frequency: 
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Associating  Eqs. (1) to (6), one obtains the following eigenvalue problem:  
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where the stiffness, mass, and aerodynamic matrices are given, respectively, as: 
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and the coefficients hL , L , hM and M represent the aerodynamical contribution and are given as: 
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For better visualization, Eq. (7) is expanded into the form: 
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where the dimensionless parameters are: 
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From the characteristic equation  
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the stability analysis can be performed based on the examination of the complex eigenvalues. 
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2.2 Inclusion of viscoelastic damping 

 
 Viscoelastic damping is introduced into the aeroelastic model by including viscoelastic resilient elements to the 
suspension of the airfoil; those elements take the form of translational and rotational mounts, such as those illustrated in 
Fig. 3, in which the viscoelastic layer is deformed in pure shear. 
 

(a) (b) (c) 
Figure 3 – (a): translational viscoelastic mount; (b) rotational viscoelastic mount; (c) deformation of the rectified 

viscoelastic layer 
 

Assuming linear viscoelastic behavior, the relation between the shear stress  and the shear angle  in the 
viscoelastic layers is:   
 
  vG T , .     (14) 

 
where  ,TGv  is the complex shear modulus of the viscoelastic material, which will be discussed in the next sub-

section.  
Considering the dimensions of the viscoelastic layer shown in Fig. 3(c), the equivalent complex, frequency-and 

temperature-dependent viscoelastic stiffness of the translational and rotational mounts are, respectively: 
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In Eqs. (16), l is the length of the viscoelastic layer of the translational mount and meanR  is the mean radius of the 

viscoelastic layer of the rotational mount. 
Associating Eqs. (14) to Eqs. (11) and (12), one obtains the following nonlinear eigenvalue problem, involving a 

frequency- and temperature-dependent stiffness matrix, which must be solved for performing stability analysis. 
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2.3. Computation of flutter speeds 
 
 In the present study, flutter predictions have been made by using the well-known K-Method (Cooper and Wrigth Jr., 
2007, Pierce and Hodges, 2002), according to which the stiffness matrix is modified according to: 
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  1* ig K K .  (18) 

 
where g is a parameter which simulate the structural damping. 
 
 The K-method has been adapted for the aeroviscoelastic problem, comprising the following steps: 

 
1) Define the geometric parameters h, ,r , ,a,e,b.     

2) Calculate a hx ,m ,k ,k ,I .    

3) Insert the viscoelastic associated parameters hp , p ,T .  

4) Choose a value for the reduced frequency k; 
5) Calculate the Theodorsen Function C(k) and the aerodynamics coefficients h hL ,L ,M ,M .   

6) Solve the eigenvalue problem for the undamped case and calculate the values of i  and associated ig . 

7) Calculate the velocity associated to k. 
8) Calculate the complex viscoelastic modulus. 
9) Insert complex modulus in the dynamic matrix and compute the characteristic equation  F ,g .  

10) Use an optimization algorithm to compute the eigenvalues, which are the roots of  F ,g .  

11) Repeat the steps 4 to10 for increasing values of the reduced frequencies. 
12) Plot the values of damping factors and natural frequencies as functions of the flow velocity.  
 
It is a good practice to evaluate the residuals associated to the optimization solutions obtained in Step 10. 
 

3. VISCOELASTIC MATERIALS 
 
The distinguishing feature of viscoelastic materials is that their mechanical behavior can be understood as the 

combination of pure elastic behavior, typical of elastic solids, and the viscous behavior of Newtonian fluids. As a result, 
those materials present memory effect. Moreover, when subjected to harmonic loads, viscoelastic materials exhibit 
hysteresis, which leads to energy dissipation. It is also observed that the harmonic behavior depends on the excitation 
frequency  and more strongly on the temperature T. 

Various models have been developed for describing the mechanical behavior of viscoelastic materials both in time 
and frequency domains (de Lima, 2007). Among them, the most frequently used is the complex modulus approach, 
which defines frequency-dependent complex moduli as follows: 

 
      TGiTGTGv ,,,      (19) 

 
or, alternatively, 
 
       TiTGTGv ,1,,   ,  (20) 

 
where  TG , is the storage modulus,  TG ,  is the loss modulus, and   is the loss factor. This later quantifies the 

capability of the viscoelastic material to dissipate energy.  
Based on the experimental evidence that the influence of an increase in temperature is equivalent to a decrease in the 

excitation frequency, the Frequency-Temperature Equivalence Principle can been evoked (Lakes, 2009, Jones, 2001) to 
account for the influence of temperature on the viscoelastic behavior. According to this principle, the value of the 
modulus at any frequency   and temperature T is equal to the value of the modulus at a shifted value of frequency, r , 

known as reduced frequency, at prescribed reference value of the temperature, zT , i.e., 

 
    v v r zG ,T G ,T     (21) 

 
where  r T T   . 

 In the equation above,  TT  is known as the shift factor, which must be identified from experimental tests for 

each viscoelastic material. Specifically for the case of the material ISD112TM, produced by 3M®, which has been used 
in the present study, the model used to represent the complex moduli has been proposed by (Drake, Soovere, 1984), as 
follows: 
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The values of the coefficients appearing in the equations above are presented in Tab 1. 
In Fig. 4(a), the real and imaginary parts of complex modulus, as well as the loss factor, are depicted as functions of 

the reduced frequency, while the curve for the shift factor is shown in Fig. 4(b).  
In Fig. 5 the surface representing the loss factor as a function of temperature and frequency is presented. 
 

Table 1 - Parameters for viscoelastic Material ISD112TM. 

Parameter Value Parameter  Value 

 1B MPa  0.4307  zT K   290 

 2B MPa  1200   LT K  210 

 3B MHz  1.5403  HT K  360 

4B  0.6847  0 1AS / K   0.05956  

5B  3.241  1ALS / K  0.1474 

6B  0.180  1AHS / K  0.009725 

 

(a) (b) 
Figure 4 – Properties of the viscoelastic material ISD112TM. (a) Complex moduli; (b) Shift Factor. 
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Figure 5 – Loss factor as function of temperature and frequency for ISD112 TM. 

 
4. NUMERICAL SIMULATIONS 

 
Based on the formulation presented in the previous sections, numerical simulations have been performed aiming at 

evaluating the influence of the viscoelastic dampers on the flutter speeds of a typical section model. For this purpose, 
the values of the parameters of the aeroviscoelastic system provided in Tab 2 have been used for the along with a 
MATLAB® computer code in which the steps presented in the sub-section 2.3 have been implemented. 

 
Table 2 – Physical and geometric properties of typical section aeroviscoelastic model 

Parameter Value 
Mass ratio    76 

Semichord  b  0.15 m 

Natural frequency of heave  h  55 rad/s 

Natural frequency of pitch    65 rad/s 

Radius of gyration  r  20 5, Kg m  

Air density    1.225 kg/m³ 

Dimensionless coefficient of position of mass center  e  0.1 

Dimensionless coefficient of position of elastic center  a  0.2 

Operation Temperature  T  300 K 

Geometric coefficient of viscoelastic spring in heave  hp  41 10 m   

Geometric coefficient of viscoelastic spring in pitch  p  41 10 m  
 

 
Figure 6 – Natural frequencies. Comparison between aeroelastic and aeroviscoelastic systems. 
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Figure 7 – Damping. Comparison between aeroelastic and aeroviscoelastic systems. 

 

Figure 8 – Residuals of the optimization process. 

As can be seen in Figs. 6 and 7, the flutter speed for the undamped system was found to be 27.33 m/s, while for the 
aeroviscoelastic model, the instability condition was achieved for a flow speed of 36.64 m/s. 
 For illustration, Figure 8 shows the residuals associated to the optimization process. As observed, these residuals are 
satisfactorily small, indicating that the roots of the characteristic equation have been correctly calculated.  

In figures 9 and 10 one can assess the influence of temperature on the aeroviscoelastic behavior. Table 3 
summarizes the values of the flutter speed for each value of temperature considered. It can be seen that the flutter speed 
monotonically decreases as temperature increases, exhibiting an asymptotical trend for higher temperature values. This 
trend is confirmed in Fig. 11, in which a larger number of temperature values have been considered. 

 

 
Figure 9 – Aeroviscoelastic system response for various temperature values 
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Figure 10 – Zoomed view of Fig. 9. 

  
Table 3 – Temperatures associated to flutter speed. 

Temperature [K] Flutter Velocity [m/s] 
265 - 
273 51.81 
290 36.56 
300 34.64 
315 33.48 
330 32.92 
350 32.39 

 

 
 

Figure 2 – Flutter velocity of the aeroviscoelastic system as function of temperature. 

 
5. CONCLUSIONS 

 
In this work the influence of the viscoelastic behavior associated to the resilient elements of a typical section 

aeroelastic model has been appraised. A numerical procedure has been suggested to compute the flutter speeds, 
accounting for the dependency of the viscoelastic material properties on frequency. Also, the modeling procedure 
enables to account for the influence of temperature on the aeroviscoelastic behavior. The results of numerical 
simulations lead to conclude that the inclusion of viscoelastic dampers do entails increased flutter speeds. Hence, the 
use of viscoelastic materials can be considered as valuable strategy for passive flutter control.  However, the 
improvement of the stability range depends heavily on temperature and this issue must be properly accounted for. 
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