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Abstract. This work derives a spectral element for a rotating ring segment with internal pressure, elastic foundation 

and structural damping that is based on the Euler-Bernoulli beam theory. The rotating effect appears as Coriolis 

accelerations, which cause the bifurcation of the natural frequencies, and as a centrifugal hoop stress, which causes an 

increase of the ring stiffness. The internal pressure shift the resonance peaks to higher frequencies making the system 

more rigid. The elastic foundation causes the bifurcation of the rigid body mode and makes the system stiffer. The 

structural damping decreases the amplitude of the resonance peaks without modifying the resonance frequencies. The 

spectrum relation (wavenumber versus frequency) and the forced response are obtained. Results are validated by 

comparison with the analytical solution for a uniform ring. A rotating dynamic force is naturally derived for the 

Spectral Element Method and employed to compute the forced response. The models developed in this work can be 

used to investigate the dynamic behavior of uniform and non-uniform rings 

 

Keywords: rotating ring, internal pressure, elastic foundation, wave propagation, spectral element. 

 

1. INTRODUCTION  

 

Several methods have been used to evaluate the dynamic behavior of structures and the Spectral Element Method 

(SEM) (Doyle, 1997) is one of them. SEM is a method based on wave propagation with the dynamic stiffness matrix 

written in the frequency domain. It has similarities with other commonly used methods (Lee, 2009): spatial mesh and 

assembling of a global matrix using element matrices as in the Finite Element method; exact dynamic description of the 

structures within the scope of the theory used in the formulation  and a reduction of the number of elements that are 

necessary to describe the structure as in the Dynamic Stiffness Method; superposition of wave propagation modes and 

the Discrete Fourier Transform used to compute periodic or transient responses via the FFT algorithm as in the Wave 

Spectral Analysis Method. Therefore, it can be considered as a semi-analytical method. 

The main advantage of SEM compared to FEM is that with SEM dynamic models are much smaller and, therefore, 

can be computed at a much lower computational cost, thus making it more adequate for optimization and uncertainty 

predictions. Another advantage is eliminating discretization error of the domain that affect the accuracy of the results 

obtained by FEM in high frequencies. This occurs due to the exact dynamic description in SEM. As a disadvantage, this 

method is able to calculate only structures with relatively simple geometry. 

The flexible rotating ring is an important structural component that has been investigated by several authors 

(Bickford and Reedy, 1985; Endo, et al., 1984, Huang and Soedel, 1987a and 1987b). They are used to model tires, 

gears, sensors or when it is necessary to calculate the in-plane vibrations of components that can be approximated by 

cylinders, such as gas turbines and centrifugal separators, among other applications. The study of tire vibrations due to 

non-uniformities caused by the fabrication process is the application that has motivated this work. 

Endo et al. (1984) compared experimental and analytic data for in-plane vibrations of uniform rings.  In their 

formulation, the initial tension due to the rotation and the centrifugal acceleration were considered. Their results were 

similar to ours for the natural frequencies as a function of rotation speed and showed that, for thin rings, the rotary 

inertia can be neglected. Bickford and Reedy (1985) derived the equations of motion of a rotating ring using the Euler-

Bernoulli theory considering the Coriolis acceleration and the hoop stress induced by the rotation. They concluded that 

the transverse shear deflection and the rotary inertia can be neglected for thin rings. Huang and Soedel (1987a and 

1987b) applied these equations to obtain the free and forced response for stationary rings with rotating loads and for 

rotating rings with stationary loads to know if the problems were similar. Their analyses concluded that they are similar 

for low rotating speeds or when the excitation frequency is high compared to the rotation speed. 

In a preview work (Beli and Arruda, 2013), the effects of rotation were investigated using a spectral element 

formulation for a rotating ring. The model is able to simulate the bifurcation of natural frequencies that occurs due the 

Coriolis acceleration and a shift of the frequencies to higher values of the spectrum that occurs due the centrifugal hoop 

stress that increase the stiffness with the rotation. Now, the authors consider other effects in the formulation, namely the 

internal pressure, an elastic foundation and structural damping, which enrich the modeling of the dynamic behavior of 

rings. 
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The model is developed only for in-plane vibrations using the Euler-Bernoulli beam theory including the effects of 

rotation of the preview work (centrifugal acceleration and centrifugal hoop stress), internal pressure, elastic foundation 

and structural damping. The spectrum relation and the forced response are analyzed and the results are validated for a 

homogenous ring using an analytical solution. A rotating dynamic force is naturally derived in the formulation and used 

to compute the forced response. 

  

2. EQUATIONS OF MOTION 

 

A scheme of the rotating curved beam segment with internal pressure and elastic foundation treated here can be seen 

on Fig. 1.  
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Figure 1. Differential element of rotating ring on an elastic foundation with internal pressure 

 

The Euler-Bernoulli assumption that plane sections remain plane after deformation and normal to the reference 

surface can be used for thin rings. Neglecting the transverse shear deformation effect, considering that significant strain 

is therefore in the s direction, and using Hamilton’s principle, the coupled equations of motion governing the element 

may be shown to be (Huang and Soedel 1987b): 

 












∂
∂

Ω+
∂

∂
=

+−










∂

∂
+

∂
∂

+Ω+










∂

∂
+

∂
∂

+










∂

∂
−

∂

∂












∂
∂

Ω−
∂

∂
=

+−










∂

∂
+

∂
∂

−+Ω+







∂
∂

+−










∂

∂
−

∂

∂

t

w

t

u
AR

ubRkbp
s

u
R

s

w
RbpAR

s

u
R

s

w
AE

s

w

s

u

R
IE

t

u

t

w
AR

wbRkbp
s

w
R

s

u
RbpAR

s

u

R

w
AE

s

w
R

s

u
IE

u

w

2

)(2)(
1

2

)(2)(

2

2

02

2
2

0
2

2

2
*

3

3

2

2
*

2

2

02

2
2

0
2*

4

4

3

3
*

ρ

ρ

ρ

ρ

 (1) 

 

Where 
 

)1(* ηiEE +=  (2) 

 

E is the Young’s modulus, η is the structural damping coefficient, w and u are the radial and the tangential 

displacements, s is the angular coordinate, s0 is the angular length of the element, t is the time variable, R is the mean 

radius, b and h are the width and the height of the beam, A is the cross section area, I is the area moment of inertia, ρ is 
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the mass density, p0 is the internal pressure, kw and ku are the radial and tangential elastic foundation stiffness, and Ω is 

the rotation velocity. In Fig. (1), T is the axial force, V is the transverse force and M is the bending moment. 

In the system of equations Eq. (1), the first equation corresponds to the flexural equation and the second to the 

extension equation. In these equations the Coriolis terms are 2Ω(dw/dt) and 2Ω(dw/dt) and the tangential and radial 

velocities are modified by the angular speed, thus modifying the stationary ring problem. The centrifugal hoop stress 

term is ρΩ
2
R

2
; it works as an internal pressure that increases with the rotational velocity. 

The internal pressure is modeled in agreement with the thin-walled pressure vessel theory. An elastic foundation 

links the element with the rotating axes, acting as external forces in the formulation. Equation (2) expresses the 

structural damping model with the simple introduction of a complex Young’s modulus.   

 

3. SPECTRAL ELEMENT FORMULATION  

 

The methodology to model a spectral element for this structural component consists in relating the forces with the 

displacements in the frequency domain. When one does this, one obtains the dynamic stiffness spectral matrix. 

Assuming a wave propagation solution for Eq. (1) as: 
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Where Cw and Cu are the radial and transverse constants of the solutions, γ is the wave number and ω is the wave 

propagation frequency. 

Calculating the derivatives of the solutions, Eq. (3), and replacing them in Eq. (1), and rearranging the terms, one 

obtains a system of equations as functions of the amplitudes Cw and Cu: 
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The determinant of the matrix on the left side of Eq. (4) is calculated and equaling it to zero, for the non-trivial 

solution, one has the characteristic equation, Eq. (5), which relates the wave numbers with frequency. 
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Rewriting Eq. (5) by grouping terms of similar powers yields: 
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Equation (6) shows there are six wave numbers that may be real, imaginary, or complex at each frequency. Three 

wave numbers represent waves that propagate in the positive/clockwise direction and three waves that propagate in the 

negative/counterclockwise direction. Because of the Coriolis terms inserted by rotation, the wave numbers that 

propagate in different directions aren’t symmetric, as occurs in the stationary ring treated by Lee et al. (2007). It is 

necessary to know the propagation direction of the waves to use the previous formulation, which depends on the 

boundary conditions.  
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According to Lee et al. (2007), the wave numbers that propagate in the positive direction follow Eq. (7). The 

positive direction is the same as the direction of rotation of the ring shown in Fig. (1), in other words, the 

counterclockwise direction. 
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Using Eq. (5), the derivative of γ with respect to ω may be written as: 
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Equation (6) yields six wave numbers, and using Eq. (7) one can separate them, defining that the wave numbers γ1, 

γ2 and γ3 propagate in the positive direction and γ4, γ5 and γ6 propagate in the negative direction. 

Thus, the displacements can be written for each frequency as: 
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(10) 

 

The methodology used here to define the spectral matrix is the same employed by Delamotte et al. (2008). In other 

words, one writes the element displacements as a function of the wave amplitudes in Eq. (9) and writes the element 

forces and moments as a function of these same wave amplitudes. With these two relations, one can eliminate the wave 

amplitudes and obtain an expression that relates the displacements and the forces, which yield the desired dynamic 

stiffness matrix. A way to simplify the equation is to relate the amplitudes of the Eq. (9) and (10). From the system of 

Eq. (4) one can write: 
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For each wave number there is a different relation, so: 
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(12) 

 

A matrix [α], a vector {C} and a vector {N} can be used to write the displacements w(s) and u(s) and the rotation   in 

a simplified form, as functions of the w(s) constants. 
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{N} is a vector of the spatial solutions for the negative wave numbers, where the s0 term is the element length, used 

in order to improve the numeric stability of the solution. Thus, one can write: 
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Evaluating the displacements at the ends of the element, a matrix is found that relates the displacements with the 

vector of amplitudes {C}. 
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Simplifying the notation: 
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It is possible to write the forces as a function of the {C} vector too. The forces and moments are related to the 

deformations and displacements by the Euler-Bernoulli theory. Writing them as functions of the wave amplitudes 

yields: 
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Evaluating the forces and moments at the ends of the element, a matrix that relates the displacements with the vector 

of wave amplitudes {C} can be obtained: 
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Simplifying the notation: 
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Thus, the spectral matrix for a rotating ring element [K(ω)] can be obtained from Eq. (16) and Eq. (21):  
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The procedure to assemble the global matrix is the same employed in the Finite Element method, i.e., the 

superposition of element matrices. The force vector is in the frequency domain and, given the formulation employed, 

the forces have the same angular speed of the ring and are stationary in a rotating frame, remaining at the nodes when 

they are applied while they rotate, Fig. 2. 
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Figure 2. Rotating ring with rotating dynamic loads 

 

With the spectral matrix previously formulated and defining the dynamic force vector, one can obtain the 

displacements and rotations at each node. The forced response represented by Frequency Response Functions (FRF) can 

be computed and compared with the results obtained via analytical solution for the homogeneous ring case. 

 

4. ANALYTICAL SOLUTION  
 

Equations (1) are also the equations of motion for a complete ring. The analytical natural frequencies are obtained 

assuming that the displacements are given by: 

 

)(

)(

),(

),(

t
R

s
ni

n

t
R

s
ni

n

n

n

eUtsu

eWtsw

ω

ω

+

+

=

=
 

(23) 

 

Where n is the mode count, Wn and Un the amplitudes of the solutions.  

Inserting Eq. (23) in Eq. (1) yields the matrix system: 
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Where 
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For a non-trivial solution, it is necessary that the determinant of matrix L vanishes, resulting in a polynomial 

equation (Eq. 26) that yields four natural frequencies: two flexural modes and two extensional modes. 
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(26) 

 

Finally, the coefficients of Eq. (26) are: 
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5. NUMERICAL RESULTS  
 

The numerical validation of the rotating ring element is done for a uniform rotating ring by comparison of the forced 

and operational responses with the analytical solution and with a finite element model. The geometric properties of the 

uniform ring are radius R = 0.25 m, width b = 0.15 m, height h = 0.002 m, mass density ρ = 7200 kg/m3, Young’s 

modulus E = 220 GPa, rectangular cross-sectional area A = bh and inertia I = bh3/12.  

The SE model consists of four spectral elements (Fig. 3a). The forced responses are calculated for a radial excitation 

force and a radial displacement at the same node as show in Fig. 3b. 

 

(a) 

 

                                     (b) 
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Figure 3. Model of a rotating ring in SEM (a), excitation and response location to calculate the forced response (b). 

 

5.1 Internal Pressure 

 

Using internal pressure of 1 bar with rotation of 50 rad/s the effect of the internal pressure will be investigated. The 

elastic foundation and structural damping effects are not considered in this sub-section. 
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Figure 4. Real (a) and imaginary (b) parts of wavenumbers for p0 = 1 bar (x) and p0 = 0 (-). 

ISSN 2176-5480

8803



D. Beli and J.R.F Arruda 
Vibrations Analysis Of Rotating Ring With Internal Pressure And Elastic Foundation Using A Spectral Element Formulation 

 

 

The internal pressure influences low and mid frequencies of the spectrum relation (Fig. 4a, Fig, 4b), modifying the 

real and imaginary parts of the wavenumbers. They are zero until a given frequency, in this case 103 Hz. In the FRF of 

Fig. 5 the resonance peaks are shifted to higher frequencies in accord with the increasing of the internal pressure. This 

occurs because the internal pressure increases the ring stiffness. 
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Figure 5. FRFs for internal pressure analysis: SEM for p0 = 1 bar (-x-), SEM for p0 = 0 bar (──) and 

 analytical solution for p0 = 1 bar (vertical lines).     

 

The map of the FRF amplitude versus Ω with internal pressure (Fig. 6a) remains the same as the map of the FRF 

versus Ω without pressure, but the resonance peaks are shift to higher frequencies because of the internal pressure. In 

the FRF plot versus internal pressure with constant rotation velocity of 50 rad/s (Fig. 6b) the effect of the internal 

pressure that is not linear and changes with frequency. The pair of frequencies of bifurcation due the rotation follows 

the same trend and the high frequency modes are more influenced by the internal pressure. As expected, the rigid body 

mode does not change with this parameter. 

 

(a) 

 

(b) 

 
 

Figure 6. Map of FRF versus Ω with p0 = 1 bar (a) and map of FRF versus internal pressure with Ω = 50 rad/s (b): SEM 

(continuous map) and analytical solution (o). 
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5.2 Elastic Foundation 

 

In this sub-section an elastic foundation with radial and tangential values of stiffness spring of 10
4
 N/m

3
 is included 

with a rotating speed of 50 rad/s. The internal pressure and structural damping effects are not considered. 

The elastic foundation changes the spectrum relation at low frequencies. In this case it slightly modifies the real and 

imaginary parts of wavenumbers in the range of 0 to 100 Hz (Fig 7a, Fig. 7b). The bifurcation of the rigid body mode 

caused by the elastic foundation can be seen in the FRF of Fig. 8. Two frequencies corresponding to the radial and 

tangential stiffness of the foundation appear. The flexural modes in low frequencies are slightly shifted to the right of 

the spectrum, i.e. the system becomes stiffer. 
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Figure 7. Real (a) and imaginary (b) parts of wavenumbers: kw = ku = 10
4
 N/m

3
 (x) and kw = ku = 0 (-). 
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Figure 8. FRF for elastic foundation analysis: SEM for kw = ku = 10
4
 N/m

3
 (-x-), SEM for kw = ku = 0 (──) and 

analytical solution for kw = ku = 10
4
 N/m

3
 (vertical lines).       

 

 

In the map of the FRF versus Ω with elastic foundation (Fig. 9a) a bifurcation of the rigid body mode appears, which 

remains linear with the rotation, but the rotation does not act in the bifurcation of this mode and the bifurcation gap 

keeps the same ratio with the rotation speed. With foundation stiffness and Ω equal to zero, the system behaves as a 

mass-stiffness problem with the radial and tangential springs in parallel. Then, the rigid body modes do not start at zero 

and the two natural frequencies have the same value.  

In the analysis of the FRFs versus stiffness of the elastic foundation (Fig. 9b), it is considered that the radial and 

tangential stiffness have the same value. The bifurcation of the rigid body made is nonlinear with the spring stiffness, 

while the other modes have a linear relation. 
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(a) 

 

(b) 

 
 

Figure 9. Map of FRF versus Ω with kw = ku = 2.10
4
 N/m

3
 (a) and map of FRF versus elastic foundation stiffness with 

Ω = 50 rad/s (b): SEM (continuous map) and analytical solution (o). 

 

 

5.3 Structural Damping 
 

In this sub-section a structural damping of 0.01 with rotation speed of 50 rad/s is used. The internal pressure and 

elastic foundation effects are not considered. 

The structural damping influences the real and imaginary parts of the wavenumbers that are zero or close to zero 

(Fig. 10a, Fig. 10b), increase them for larger values with increasing frequency, as a bifurcation respect to frequency. For 

higher damping values this characteristic is accentuated.  

Figure 11 shows the structural damping decreases the amplitude of the resonance peaks without modifying the 

resonance frequencies. The amplitude of the rigid body mode contribution is not influenced and the amplitude of the 

peaks decreases with increasing frequency. At higher frequencies, because of the damping, only a resonance peak 

appears, leading to false impression that there is only one resonance instead of two. 
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Figure 10. Real (a) and imaginary (b) parts of wavenumbers for η = 0.01(x) and η = 0 (-). 
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Figure 11. FRF for structural damping analysis: SEM for η = 0.01(x) and SEM for η = 0 (-).       

 

The map of FRF versus Ω with structural damping (Fig. 12a) has the same behavior of the map without structural 

damping. Only the amplitude of the resonances is smaller. In the map of FRF versus structural damping (Fig. 12b), it 

can be seen that the damping does not influence the resonances and that their amplitudes decrease with increasing 

damping 

 

(a) 

 

(b) 

 
 

Figure 12. Map of FRF versus Ω with η = 0.01 (a) and map of FRF versus structural damping with Ω = 50 rad/s (b): 

SEM (continuous map) and analytical solution (o). 
 

6. CONCLUSIONS 

 

This work developed a spectral element for a rotating ring with internal pressure, elastic foundation and structural 

damping. The spectrum relations, the forced responses and the maps in relation the parameters analyzed were obtained. 

The results were compared with the analytical solution and good agreement was obtained for all frequencies and in all 

the cases investigated.  

The SEM model captures the physics of the dynamic problem including the rigid body mode effect, the bifurcations 

of the natural frequencies and the increase of the stiffness due the rotation. The internal pressure shifts the resonance 

peaks to higher frequencies making the system stiffer, the elastic foundation causes the bifurcation of the rigid body 
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mode and also makes the system stiffer, and the structural damping decreases the amplitude of the resonance peaks 

without modifying the resonance frequencies. 

The governing equations of motion for the analytical solution and SEM solution are the same, which explains the 

convergence of the results, but the analytical solution is only available to compute the free response of a uniform ring, 

while the SEM model can be used to compute the free and forced responses of a rotating ring with non-uniformities.  

This study of SEM applied to rotating rings with internal pressure, elastic foundation and structural damping 

represents an improvement with respect to a previous investigation that considered only the rotation effects and is an 

original contribution to the literature on the subject. The physics of the dynamic phenomena involved could be 

represented and analyzed. Future work will introduce other effects in order to better describe the behavior of rings with 

non-uniformities.   
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