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Abstract. The quality control of the surface finish of a piece produced in the turning process may be monitored by 
using several vibration signals processing techniques measured during the machining. Usually, the mechanical 
vibration measured during the metal cutting process depends on the several parameters, such as, the feed, cutting 
speed, cutting deep, etc. In this work, it will be employed the self-organizing neural networks, or Kohonen maps in 
order to correlate the mechanical vibration with the feed of the cutting tool in the turning process. For the 
classification task, the vibration signals measured during the machining have been processed in the time-scale using 
the Continuous Wavelet Transform. Subsequently, these signals were used as the inputs of a self-organizing neural 
network in order to study the influence of the cutting tool feed on the mechanical vibration.      
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1. INTRODUCTION 
 

The surface roughness of pieces produced by the machining process depend on several parameters, such as, the 
cutting speed, feed, cutting tool wear, mechanical vibration, etc. Usually, in a production line, the surface finish quality 
is estimated by measuring the roughness of pieces made in the machining process. Although this procedure is highly 
reliable, the total time spent to measure the roughness of the pieces could become impractical during the product quality 
control process. In this context, several techniques based on the on-line monitoring of the product surface quality are 
being extensively researched in the literature (Sick, 2002; Santos et. al., 1998; Guimarães et. al., 2008; Guimarães et al., 
2011). For example, by using the information of the vibration signals measured during the machining process, it is 
possible to estimate the wear level of the cutting tool and the roughness of the pieces produced in the turning, milling or 
drilling process (Braun, 1986; Santos, 1998; Sick, 2002; Devillez and Dudzinsk, 2005; Guimarães et al., 2011). 

After the measuring of the mechanical vibration signal in the machining process, the data are processing by several 
techniques in order to extract the amplitude, frequency or phase parameters which could be correlated either with the 
piece surface roughness or the cutting tool wear. Traditional techniques of the stationary signal processing, such as, the 
spectral analysis, cepstral analysis and the analysis in the time domain have been largely used for this purpose (Braun, 
1986; Santos et al., 1998, Guimarães et al., 2008). Most recently, non-stationary signal processing techniques, as for 
example, the Wavelet Transform (Kilundu et al., 2011) and the time-frequency distributions (Peng et al., 2012) have 
been also employed for the analysis of the mechanical vibration generated in the machining process. By using these 
techniques, it is possible to detect the transient vibration patterns of the signals in the time domain measured during the 
metal cutting process. 

Indeed, most of vibration signal processing techniques are used as the inputs of the classification systems of cutting 
tool wear used in the machining process (Sick, 2002; Kilundu et. al., 2011). For the classification of the surface quality 
of pieces produced by the milling process, Santos et al., (1998) have applied the artificial neural networks in order to 
estimate the roughness of the product during the machining process. In this work, Santos et al. (1998) employed the 
spectral analysis and the low-pass filters to try to correlate the roughness of the pieces with the mechanical vibration 
measured in the process. Devillez and Dudzinsk (2005) used the fuzzy systems for the classification of the roughness of 
steel tubes in the turning process. They also used the Fourier Transform in order to extract the frequency and amplitude 
components of the signals due the mechanical vibration caused by the movements from the cutting tool.       
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The relationship between the feed and surface roughness of pieces have machined by the turning process can be 
obtained by empirical equations available in the literature (Machado and da Silva, 2004). However, the roughness also 
depends on the mechanical vibration and several cutting parameters. Unfortunately, this relationship is highly nonlinear 
since the mechanical vibration of the tool, workpiece and machine tool set depends on the tool geometry, piece and tool 
material, natural frequency of mechanical system, etc. Hence, the objective of this work is to correlate the feed of the 
cutting tool with the mechanical vibration of steel shafts made by the turning process using the self-organizing artificial 
neural networks. First of all, the vibration signals measured during the metal cutting process were processed using the 
Continuous Wavelet Transform (CWT). It can be observed that when the tool feed increases, the transient vibration 
components generated by the cutting process also change. Subsequently, the vibration signals in the wavelet domain 
have been used as the inputs of the the self-organizing neural. It will be shown in the analysis results that the transient 
vibration components caused by the turning process could be correlated with the cutting tool feed.  
 
2. MECHANICAL VIBRATION AND CUTTING PARAMETERS 
 

In a general way, the lower is the cutting tool feed, the lower is the surface roughness of the piece produced by the 
turning process. However, it is difficult to establish a relationship between mechanical vibration, feed and piece surface 
finish analytically. Indeed, the mechanical vibration generated during the metal cutting process is highly nonlinear with 
several frequencies components (Sick, 2002) since the signals measured during the machining process depends on the 
cutting parameters, as for example, cutting speed, piece material, cutting tool feed, etc. Moreover, there are several 
noise sources that may contaminate the vibration response, such as the movements between the blank and machine tool, 
or the chatter vibration (Devillez and Dudzinsk, 2005), vibration of the mechanisms from machine tool, etc.  

According to Santos et al. (2000), the larger is the cutting tool feed, the lower is the amplitude of the mechanical 
vibration produced in the turning process. Guimarães et al (2011) and Santos et al. (1998) have demonstrated that the 
turning process produces vibration amplitude modulation components caused by the contact between the cutting tool 
and the metal piece. The amplitude of these components and the modulation repetition pattern are associated with 
cutting speed of the turning process. In this work, the modulation amplitude of vibration components caused by the 
contact between the blank and the tool will be extracted using the Continuous Wavelet Transform (CWT). Moreover, 
the evolution of the feed and the analysis of the behavior of the transient vibration components produced by the 
machining will be studied by means of the self-organizing neural network.       
 
3. TOOLS OF SIGNAL PRE-PROCESSING 

 
3.1 Continuous Wavelet Transform 
 

In the traditional spectral analysis, the vibration signal in the time domain is compared with harmonic functions. In 
this way, by using the Fourier Transform (TF), the frequency components of the vibration signals measured during the 
turning process can be obtained easily (Sick, 2002; Santos et al., 1998; Guimarães et al., 2011). Nevertheless, the 
features of the transient vibration signals caused by the turning of the shafts could not be easily extracted by the 
conventional spectral analysis. Since that the window in the time domain used in the FT has infinity duration, it is not 
possible to extract neither when the transient component has occurred and nor its duration in the time-frequency plane 
(Cohen, 1995). In this case, appropriate techniques of the non-stationary signal analysis should be used for this purpose.     

In this work, it will be applied the Continuous Wavelet Transform (CWT) to the vibration signals measured during 
the shafts machining process. The CWT has several advantages when compared to the others time-frequency 
representations, as for example, the Wigner Distribution (WD), the Choi-Williams Distribution (CWD) and the Short 
Time Fourier Transform (STFT) (Peng, 2012). The WD has high resolution in the time-frequency plane but for 
multicomponent signals the cross-terms may be mask the analysis (Cohen, 1995). The CWD has a high computational 
cost and the STFT has constant time-frequency resolution which can difficult the extraction of the transient vibration 
components caused by the turning process. Therefore, the CWT to be used in this work, CWT(t,a), is defined by:  
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where ψ is the mother wavelet which is compared with signal in the time domain, x(t), a is a scale factor used in the 
dilation of ψ(t) and τ is the delay time used in the convolution integral from CWT. In practice, there exist different types 
of mother wavelet that can be used in the correlation with x(t). In this work, it will be used the Morlet Wavelet for the 
extraction of the features of transient vibration produced by the metal cutting. There are two reasons for the choice of 
this wavelet. Firstly, it was demonstrated that the vibration signals with amplitude modulation generated in the turning 
process are similar to this kind of wavelet (Guimarães et al., 2011). Moreover, the central frequency of the band of ψ(t) 
can be easily associated with the scale factor used in its dilation. 
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Figure 1. Morlet wavelet to be used in the analysis of the vibration signals measured in the turning process.  
 
     Figure 1 illustrates the Morlet wavelet used in the CWT of the vibration signals to be measured in the machining 
process. The relation between the scale and frequency, f, of Morlet wavelet family correlated with the vibration signals 
is described by Eq. (2) (Heneghan et al., 1994):  
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where the parameter V represents the scale division in octaves and the kψ a constant to be determined. In this work, this 
equation will be used in order to estimate the frequencies of the transient vibration components due to the shafts 
turning. By using Eq. (2), it can be seen that the larger is the scale factor, the lower is the frequency of the components 
of signal, that is, the larger is the dilation of the mother wavelet. 
  
3.2 Calculation of the vibration signal amplitude in the wavelet domain  
    

After the computation of the time-scale map provided by the CWT, it is necessary to compact the vibration data in 
the wavelets coefficient matrix. In this work, it will be determined for each scale (or frequency) the root means square 
of wavelets amplitude. Therefore, the time-scale matrix will be transformed into a vector with the vibration amplitude 
corresponding to the scales used in the decomposition of the signal. This data vector will be the inputs of the self-
organizing neural network for the classification or separation of classes (clustering) of the vibration signals measured 
during the metal machining. The root mean squares of the vibration amplitude for each wavelet scale are given by 
(Heneghan et al., 1994):  

 

∫
∞

=
0

2 ),()( dtatCWTaxrms                                                                                                                                            (3) 

     
such that xrms(a) represents a measure of the signal energy density in each scale in the time domain. When the vibration 
signal is processing by the CWT, the envelope shape of the signal is obtained for each scale or frequency in the time-
scale map. Equation (3) gives the mean value of the vibratory energy of the signal transient components in each scale. 
So, if the cutting tool feed increases during the experiments and if the vibration signal amplitude increases or decreases, 
the result of eq. (3) will indicate this effect. 
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4.  KOHONEN MAPS 
 

An Artificial Neural Network may be defined as a computational model inspired in the nervous system from humans 
(Haykin, 1994). In the signal processing context, the Multi-layer Perceptron Neural Networks have been largely used in 
mechanical vibration problems, as for classification tasks, as for regression and modeling problems by using input and 
output data measured in the system (Worden et al., 2011). In a general way, for a Perceptron Neural Network (PNN), 
usually the input data are transmitted for the next neurons layer by means of the synapses and so on, until the last 
neurons layer which are transformed in the output data. Each neuron of the neural network is modeled by an activation 
function, or transfer function, and the most common models available in the literature are the sigmoidal function, the 
hyperbolic tangent function and the linear one (Haykin, 1994; Worden et al., 2011). On the other hand, in classification 
problems, the last neurons layer is modeled by the hyperbolic tangent or sigmoidal activation functions (output data is 0 
or 1). In the other hand, in regression problems, the last neurons layer uses linear activation functions (continuous 
output data).     

The objective of this work is to study the correlation or similarity between the feed of the cutting tool and the 
workpiece surface roughness by using only the vibration signal measured during the turning process. Since the PNN 
need of input and output data for the training process, this type of neural network could not be used for this problem. 
Hence, we choose the Self-Organizing Neural Networks (SONN), or Kohonen Maps, for this investigation.  

 

 
 

Figure 2. Topology of an Artificial Neural Network.  
 

Figure 2 shows the topology of an Artificial Neural Networks with 4 inputs and 4 outputs. In the training process of 
a PNN, the weights of each neuron are fixed by the minimization of the error between the desired output and the 
computed output by the neural network. After the optimization, it is expected that the output from PNN is as close as 
possible of data used for the training or learning of the neural network. The idea and the concept of a SONN are 
different when compared to the PNN. In the processing of data in the SONN, there are several synapses by connecting 
the neurons of the same layer. Furthermore, the output data in the SONN are unknown and the correlated input data 
after the training are separated in classes (clustering).  In the case of SONN, the vector of weights of each neuron, w, 
updated in the iteration index i+1  is given by (Haykin, 1994): 

 
)(1 iii wxww −+=+ η                                                                                                                                                   (4) 

 
where the parameter η represents the learning rate and the variable x is the input matrix have defined by Eq. (5) 
provided to SONN for the training. The algorithm used for the training of SONN is called competitive learning because 
only the weight from winner neuron is adjusted in the current iteration. For the definition of the winner neuron in the 
competitive learning process, usually the distance (dist) between the inputs and the weights is computed for each neuron 
(Haykin, 1994): 
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where n is the quantity of samples of input data used in the training. Therefore, according to Eq. (5), the neuron which 
has the minor distance is the winner of the competition. In other words, if the distance between the input data and the 
weights is small, it means that the correlation between these parameters is high and vice-versa.      
 
5. NUMERICAL AND EXPERIMENTAL PROCEDURE 
 

The vibration signals to be processed by the SONN were measured during the turning process of shafts made of 
ABNT 1020 steel with hardeness 125 HB (Guimarães et al., 2011). For this analysis, 12 specimens with diameter of 17 
mm were submitted to the machining process. In all experiments, the cutting depth of workpieces was 0.5 mm. The 
values of the feed to be considered in the experiments are shown in the Table 1. In the data sampling, it was considered 
only one value for the cutting speed: 400 rpm. Hence, the range of feed values considered in this work was of 0.047 
mm/cycle to the 0.299 mm/cycle, as can be seen in Table 1.  

 
Table 1. Values of the cutting speed and feed used in the experiments. 

 
Cutting Speed Feed (mm/cycle) 

400 rpm 0,047 0,104 0,166 0,187 0,250 0,299 
   
     For the clustering of the vibration signals, they were measured by using a 4214 model accelerometer from Bruel & 
Kjaer manufacturer has attached to the toolholder of the machine tool. Table 2 describes the parameters values used for 
measuring the vibration data in the time domain. It is not necessary to use a signal conditioning unit since this 
accelerometer has an integrated signal pre-amplifier for increasing the output signal gain. The signals measured during 
the turning process were directly connected to a data acquisition board from National Instruments manufacturer. 
Subsequently, the software Labview® was used to save the data file in a txt format.    
 

Table 2. Parameters values used in the acquisition of vibration signals from turning process. 
 

Sampling Frequency Number of Points Acquisition Time Sensitivity of 
Accelerometer 

2000Hz 4000 2.0 s 1.05mV/m/s2 
 

     After the vibration data aquisition, the signals in the time domain were processed by using the CWT as defined in 
Eq. (1). Subsequently, the time-scale matrix provided by the CWT was transformed in a vector by using the rms value 
given by Eq. (3). Equations (1) and (2) were implemented to analyse the vibration signals via Matlab® 2009ª software. 
The next step of the clustering procedure was to train the Self-organizing Neural Network using the neural toolbox 
available in the Matlab® 2009a as well. In this procedure, the rms vectors provided by Eq.(3) for each feed considered 
in the experiments were transformed in a matrix to be used in the learning process from SONN. Finally, it was possible 
to correlate the feed with the vibration signal amplitude by using the output data provided by the SONN.         
 
6. ANALYSIS OF THE RESULTS 
 

Figure 3 shows the vibration signal in the time domain measured in the turning process by considering a cutting tool 
feed of 0.047 mm/cycle and rotation speed of piece equals to 400 rpm. For this case, the CWT shown in Fig. 4 
illustrates two components of frequency in the scales of 13 (6.4 Hz) and 26 (1.41 Hz), respectively. It is interesting to 
note that the vibration amplitude in the scale of 13 is approximately constant with the time. On the other hand, the 
amplitude of frequency component in the scale of 26 is varying periodically with the time. From this analysis, it is 
believe that the vibration component in the scale of 13 can be caused by noise source due to the vibration of the 
machine tool. However, the vibration component with amplitude modulation in the scale of 26 should be produced by 
the metal cutting process during the shafts turning.  
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Figure 3. Vibration signal from turning process with feed of 0.047 mm/cycle and speed of 400 rpm.  
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Figure 4. CWT of x(t) measured in the turning process with feed of 0.047 mm/cycle and speed of 400 rpm. 
 

When the feed increases, it can be seen in the time-scale map from Fig. (5) some vibration components generated by 
the metal cutting process. For example, for the feed of 0.0104 mm/cycle and the rotation of 400 rpm, there are transient 
vibration components in the scales shown in Fig. (5). On the other hand, these transient signals could not be observed in 
the time-scale map for the vibration measured in the turning process with the feed of 0.047mm/cycle and cutting speed 
of  400 rpm. From this analysis, it was demonstrated that when the cutting tool feed changes, the material removal 
process generates transient vibration components in the signals measured during the machining. Furthermore, figures 
(4) and (5) display several vibration components with amplitude modulation due to the metal removal process produced 
by the movement from cutting tool. By using the CWT, it is possible to extract the localization and of scale of these 
transient vibration components have produced by the shafts turning process. 
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Figure 5. CWT of x(t) measured in the turning process with feed of 0.104 mm/cycle and speed of 400 rpm. 
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Figure 6. Amplitude of the transient vibration components in the scales from 0 to 30.    

 
 

      After the calculation of the CWT from vibration signals for the cutting parameters described in Table 2, the wavelet 
amplitude were compacted in a matrix using the Eq. (5). This matrix has 6 rows and 30 columns. The six rows are the 
inputs from Self-Organizing Neural Network and the columns are the samples to be considered in the training of 
SONN. For the competitive learning algorithm of the SONN, it was used a learning rate, η=0.001, which is default in 
the training of the SONN by using the software Matlab® R-2009a (Haykin, 1994). For the training of the SONN, the 
CWT matrix was normalized by its maximum value (Haykin, 1994). 
     For the cutting tool feed of 0.104 mm/cycle, the transient vibration components measured in the turning process have 
the behavior shown in Fig. (6). It can be seen in this figure that the maximum amplitude of the vibration produced by 
the turning process occurred in the scales of 1 to 3 (25.4 to 20.2 Hz), 13 to 15 (6.4 to 5.1 Hz) and 23 to 26 (2.0 to 1.4 
Hz). It is interesting to note that competitive learning procedure clusters these amplitudes in the class labeled as 1 (one), 
according to Fig. (7). Thus, for the values of the feed range considered in this work, the maximum vibratory energy 
caused by the turning process is concentrated in the scales of 1 to 3, 13 to 15 and 25 to 26. Otherwise, the minor 
amplitude of vibration for all values of the feed belongs to the class labeled as 2 (two). In this class, there are the scales 
from 18 to 22 (3.6 to 2.2 Hz).            
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Figure 7. Clustering of the transient vibration data measured in the turning process.          
  
7. CONCLUSIONS 
 
     In this work, it was applied the Continuous Wavelet Transform (CWT) for the characterization of the transient 
vibration signals produced by the shafts turning process. By using the CWT, it was possible to detect the vibration 
components with amplitude modulation in the time scale plane caused by the metal cutting process. This analysis 
procedure was applied to the vibration signals measured during the machining by changing the feed from cutting tool in 
the range of 0.047 to 0.299 mm/cycle. The objective was to verify if the feed has some influence in the mechanical 
vibration generated by the contact between the cutting tool and the workpiece. 
     Subsequently, the vibration data generated by the CWT were used in the configuration and training of a Self-
Organizing Neural Networks (SONN). By using the SONN, the vibration amplitude for the several values of feed were 
clustered in classes. After the competitive learning process, the maximum values of the vibration amplitude did belong 
to one class and the minor vibration amplitude were concentrated in other class. Therefore, it was possible to identify 
the vibration frequencies caused by the cutting process that have minimum and maximum amplitude for the whole 
range of feed considered in this work. In the future, it will be studied the influence of the feed and mechanical vibration 
on the finish surface of the machined pieces.                
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