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Abstract. This work deals with the particle swarm optimization of a mushy zone parameter present in a solidification
model. The solidification model is based on the heat transfer equation employing the effective capacity method. The heat
transfer equation is solved by a finite volumes method with an explicit scheme where the central differences interpolation
function is adopted. The temperature profile and the thickness of the solidification layer are used to evaluate the numerical
solution obtained with the optimum mushy zone parameter. Populations with different sizes are investigated to analyze the
particle swarm performance.
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1. INTRODUCTION

The phase change that occurs from the liquid state to the solid state is called solidification. This phenomenon is present
in nature and in industrial processes. In nature, it can be observed in ice formation and in the solidification of volcanic
lava, while in industry, it is found in freezing, casting and welding (Tan et al., 2011; Yajun et al., 2013).

Because of its great importance in society, solidification processes have been widely studied. Experimental techniques
and mathematical models have been developed to improve knowledge associated with the phenomenon under considera-
tion (Bauer, 1993).

Among the mathematical approaches it can be singled the classical Stefan problem, which consists of a moving bound-
ary problem. However, despite this problem has been studied since the XIX century, analytical solutions are available only
for a few special situations. However, the contribution of these relevant solutions for understanding the solidification phe-
nomena then is also important today, when these analytical solutions are widely used in validation and verification of
numerical solutions.

The Stefan problem is based on the heat equation, where the phase change interface is a moving boundary, which is
represented by a jump condition, that link sand the liquid domains. To avoid the complexity of this moving boundary
problem, other mathematical models have been proposed, such as the method of apparent heat capacity and the effective
heat capacity (Hashemi and Sliepcevich, 1967; Poirier and Salcudean, 1998; Mosaffa et al., 2013). In these methods, the
solidification problem is solved in a single domain, where a modified heat capacity takes into account the phase change
phenomenon. In other words, these methods employ the heat transfer equation with variable themophysical properties for
the liquid, for the solid and for the phase change regions, by using a modified heat capacity in a single domain (Hu and
Argyropoulos, 1996).

The apparent and the effective heat capacity methods consider the existence of a mushy region, where liquid and
solid are simultaneously present. This assumption is valid for solidification of mixtures, but for pure substances it is
an approximation. Nevertheless, these methods facilitated the study of the solidification process in multidimensional
geometries by using numerical methods with fixed meshes.

Developed initially by Eberhart and Kennedy (1995) as an alternative method for the genetic algorithm, the Particle
Swarm Optimization - PSO is a stochastic optimization technique, where restrictions or parameters depend on random
variables (Landim, 1991). The PSO is based on the social behavior of various species and tries to balance the individuality
and sociability of the individuals in order to locate the optimum parameter of interest (Colaço et al., 2006).

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem analyzed in this paper consists of a one-dimensional transient heat solidification problem. In
the rectangular coordinates system initially, the entire medium is at a uniform temperature and only the liquid phase is
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present. Suddenly, a heat sink is applied at the origin of the system of coordinates (x=0) and thus a prescribed temperature
is attained at this boundary. The material then starts to solidify at x=0 and a solidification front moves away from the
origin. The physical properties of liquid and solid phases are assumed constant at each phase.

For this problem, the thermophysical properties are given by:

k̃(T) =

 ksol(T); T ≤ Tm −∆T − solid zone
kls(T) = ksol(T); Tm −∆T < T < Tm + ∆T − mushy zone
kliq(T); T ≥ Tm + ∆T − liquid zone

(1)

ρ(T) =

{
ρsol(T); T < Tm − solid zone
ρliq(T); T ≥ Tm − liquid zone (2)

Cap(T) =

 Csol(T); T ≤ Tm −∆T − solid zone
Cls(T); Tm −∆T < T < Tm + ∆T − mushy zone
Cliq(T); T ≥ Tm + ∆T − liquid zone

(3)

The specific heat per unit volume for the solid-liquid, respectively, as:

Csol = ρsolcp; Cliq = ρliqcp; Cls =
ρsol∆H

∆T
+
Cliq(T) + Csol(T)

2
. (4)

where, ρliq is the density of the liquid, ρsol is the density of the solid, cp is the specific heat, ∆H is the latent heat and ∆T
is the mushy zone parameter.

The mathematical formulation for this physical problem can be written as

Cap(T)
∂T
∂t

=
∂

∂x

[
k̃
∂T
∂x

]
0 < x < L t > 0 (5)

T = T0 0 ≤ x ≤ L t = 0 (6)
T = Tw x = 0 t > 0 (7)

∂T
∂x

= 0 x = L t > 0 (8)

and T0 is the uniform initial temperature, Tm is the melting temperature of the material, Tw the wall temperature at x = 0,
Cap is the apparent heat capacities and k̃ is the thermal conductivity function.

3. Effective capacity method

Initially proposed by Poirier and Salcudean (1998) in an effort to improve the apparent capacity method, this technique
assumes a temperature profile between the nodes. For the volume control method, the effective capacity is calculated based
on the following into over one volume, where this work will be presented by:

Cef =

(∫
CapdV

)
V

(9)

where Cef , Cap and V are the effective heat capacity, heat capacity and apparent volume control, respectively.
In this fashion, by applying the effective capacity method to the problem described by Eqs (5) - (8), the following

problem results

Cef (T)
∂T
∂t

=
∂

∂x

[
k̃
∂T
∂x

]
0 < x < L t > 0 (10)

T = T0 0 ≤ x ≤ L t = 0 (11)
T = Tw x = 0 t > 0 (12)

∂T
∂x

= 0 x = L t > 0 (13)
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4. Reference solution

In this paper, the model phase change model described above is compared to the problem of solidification in a Half-
Space (Two-phase Problem), for which an analytical solution is present in Özişik (1993).

At time t = 0, liquid at a uniform temperature T0 that is higher than the melting temperature Tm of the solid phase is
confined to a half-space x > 0. The boundary surface at x = 0 is lowered to a temperature Tw below Tm and maintained
at that temperature for times t > 0. As a result, the solidification starts at the surface x = 0 and the solid-liquid interface
moves in the positive x direction. This problem is a two-phase problem because the temperatures are unknown in both the
solid and liquid phases (Özişik, 1993). This problem is more general than the on considered in the previous examples: its
solution is known as Neumann’s solution.

0 x

Interface

Solid Liquid

Tw

Tsol

Tm

Tliq(x , t)

T
0

T� 	
∞as x

	(x,	t)

S(t)

Figure 1. Solidification in a half-space.Two-phase problem. (Özişik, 1993)

4.1 Phase change analytical solution

According to Özişik (1993), the analytical solution for the temperature distribution in the solid-liquid region is given
by:

Tsol(x,t) = Tw + (Tm − Tw)

erf
(

x
2
√
αsolt

)
erf(λ)

 (14)

Tliq(x,t) = T0 + (Tm − T0)

 erfc
(

x
2
√
αliq t

)
erfc

(
λ
√

αsol

αliq

)
 (15)

where the eigenvalues λ and the solidification front S(t) are given by

e−λ
2

erf(λ)
+
kliq
ksol

√
αsol
αliq

Tm − T0

Tm − Tw

e−λ
2(αsol/αliq)

erfc
[
λ
√

(αsol/αliq)
] =

λ∆H
√
π

cpsol(Tm − Tw)
(16)

S(t) = 2λ
√

(αsolt) (17)

In the above equations, T0 is the uniform initial temperature, Tm is the melting temperature of the material, ∆H is the
latent heat of solidification of the material, ρ is the density, k is the thermal conductivity, α is the thermal diffusivity, T is
the temperature and the subscripts sol and liq refer to the solid and liquid phases, respectively.
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5. PSO mathematical formulation

In PSO each particle is assumed to have a capacity for individual learning and a learning capability based on the
experience of the population.

Each particle i of a given population P in a n-dimensional space has a velocity vki and position xik , updated in
accordance with the Eqs. (18) and (19).

vk+1
i = ωvki + c1r1i(pi − xki ) + c2r2i(pg − xki ) (18)

xk+1
i = xki + vk+1

i (19)

where
i = 1, 2, ..., P
xi is i-th vector of individual parameters
vi = 0, for k = 0
r1i e r2i are random numbers between 0 and 1
pi is the best value found for the vector xi
pg is the best value found for the entire population
0 < ω < 1 inertial constant
1 < c1, c2 < 2 constants

In Eq. (18), the second term on the right hand side represents the individuality and the third term the sociability.
The first term on the right-hand side represents the inertia of the particles and, in general, must be decreased as the
iterative process runs. In this equation, the vector pi represents the best value ever found for the ith component vector
of parameters xi during the iterative process. Thus, the individuality term involves the comparison between the current
value of the i-th individual xi with its best value in the past. The vector pg is the best value ever found for the entire
population of parameters (not only the i-th individual). Thus the sociability term compares xi with the best value of the
entire population in the past.

Figure 2 shows the iterative procedure for the Particle Swarm Method.

k=0, n=population size
vk =0

Generate popu-
lation matrix P

Define ω
Define c1, c2

i=1
Generate random

vectors r1i and r2i

Determine pi and pg

vk+1
i = ωvki + c1r1i(pi − xki ) + c2r2i(pg − xki )

xk+1
i = xki + vk+1

ii = i + 1i = n?k = k + 1

pg is the optimum

Convergence?

1− Maximum number
of iterations reached
2−F(pg) reachs

the expected value.

yes

yes

no

no

Figure 2. Iterative procedure for the Particle Swarm Method, (Colaço et al., 2006).
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6. Optimization procedure and results

The optimization procedure for the parameter ∆T consists of minimizing the difference between the position of the
solidification front obtained by the analytical solution and the Neumann numerical solution proposal.

Eq. (20) presents the analytical solution for the position of the solidification front, while Eq. (21) defines the objective
function for the optimization problem.

S(t)analical = 2λ
√

(αsolt) (20)

The objective function, Eq. (21), is proposed based on the sum of the square differences between the analytical and
numerical solutions.

F =
n∑
1

[S(t)analitycal − S(t)numerical]
2 (21)

where n is the number of points along of the time.
The position of the solidification front was chosen because it depends only on the magnitude of time in constant to

the temperature profile which depends on time and space. This feature facilitates the numerical implementation. The
evaluation time is truncated to 70% of the total estimated time for solidification.

Random values between 1K and 10K are generated for the parameter ∆T, corresponding to the initial state of each
particle. Populations were evaluated with 10, 30 and 50 particles.

Table 1 presents the optimal values obtained for ∆T, for three different amounts of particles. The number of individuals
in the population is indicated in parentheses on the first column of the table. With 50 particles, as expected, the method
minimized the objective function with the a minimum number os iterations, i.e., 121 iterations, but the computational time
spent was the highest. This observation is confirmed by the analysis of Fig. 3, where the objective function is minimized
over for this case.

Table 1. Effects of the number of particles on the optimal solution

Number of Particles CPU(s)time ∆T (K) Objective Function Iterations

PSO(10) 10705.52 3.55996119 0.13403172 168

PSO(30) 37277.47 3.55993432 0.13403156 195

PSO(50) 38629.23 3.55448620 0.13403026 121
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Figure 3. Evolution of the objective function for seve-
ral iterations (10, 30 and 50 particles)
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Figure 4. Micro Evolution of the objective function
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Table 2 shows the results for the solidification front at three different times. It is noted that for the evaluation of the
position of the solidification front, the ∆T obtained with the PSO(10) provides satisfactory results. Therefore, the PSO(10)

can be used in future studies aimed at evaluating the solidification front.

Table 2. Deviations between Sanalytical and Snumerical with optimal ∆T

Number of particles time(s) Numerical Analytical Relative error (%)

87340 0.107297 0.108114 0.755026

436730 0.242574 0.241785 0.337337PSO(10)

611420 0.290639 0.286052 1.603686

87340 0.107297 0.108114 0.755080

436730 0.242574 0.241785 0.337328PSO(30)

611420 0.290639 0.286052 1.603664

87340 0.107298 0.108114 0.754284

436730 0.242577 0.241785 0.338563PSO(50)

611420 0.290634 0.286052 1.601887

The curves shown in Figs. 5 and 6 refer to the PSO(10). Figure 5 shows the evolution of the position of the solidification
front along time until 70% of the total time of solidification.

Figure 6 displays a comparison among numerical and analytical temperature profiles for select times as a function os
axid position, as function of time. It is observed that for the temperature field, the results for the mushy zone show a
deviation from the analytical solution used for comparison does not have this region.
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Figure 5. Evolution of the solidification front obtained with the ∆T optimal
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Figure 6. Temperature profile obtained with the ∆T optimal

7. CONCLUSIONS

The present work has determined the mushy zone parameter used in the effective heat capacity method by using an
optimization procedure based on the particle swarm algorithm. In this optimization, the differences between the numerical
solution and the reference analytical solution were minimized.

The results have shown that the optimum mushy zone parameter employed in the effective heat capacity method
furnished a numerical solution with negligible discrepancies in relation to the analytical solution of the solidification
front. Moreover, the almost linear temperature field in the solid zone was well represented by the numerical solution.
However, divergences between the analytical and the numerical solutions were observed in the mushy zone and in the
liquid zone.

The particle swarm performance was evaluated in relation to the numbers of the particles in the population. Populations
with 10, 30 and 50 particles were compared and the results showed that, for the proposed problem and considering the
populations studied, the numbers of the particles did not change significantly the temperature field and the minimum value
of the objective function.
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