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Identification (SSI) in the time domain were used to identify the modal parameters, as it will be explained in the 
following sections. 

 
 

1.2 Enhanced Frequency Domain Decomposition (EFDD) 
 
Enhanced Frequency Domain Decomposition (EFDD) is the frequency domain analysis technique (Gade et al, 

2005) where each measured signals are associated, on the power spectral density matrix, as a singular value 
decomposition (SVD), creating values and singular vectors. Through these values and singular vectors, the dynamic 
parameters of the analyzed structure, such as natural frequencies, damping ratio and mode shapes, can be estimated. 
 
1.3 Stochastic Subspace Identification (SSI) 
 
Stochastic Subspace Identification (SSI) is the time domain technique where the system response is represented by the 
Hankel matrix and the size of the matrix represent the maximum number of the model order. Results are taken by a 
singular value decomposition of the matrix and the modes in the model are extracted of the subspace thus dynamic 
parameters of the structure are estimate (Brincker and Andersen, 2006). The SSI technique use three different 
algorithmics to stimate the modal parameters: Unweighted Principal Component (UPC), the Principal Component (PC) 
and the Canonical Variated Analysis (CVA). This paper use the SSI - PC algorithmic to estimate the parameters of the 
Payload structure. 
 
2. MATERIAL AND METHODS 
 

The proposed experimental setup was carried out with 34 channels, divided into two frames with 17 channels each, 
which monitor the dynamics of the signal collected. Measurements were performed using 30 unidirectional 
accelerometers (15 in X axis and 15 in Y axis) and one tri-axial accelerometer was placed on the top of the structure as 
shown in Figure 1, in order to measure the X, Y and Z axes. The payload was placed on the table of electrodynamics’ 
vibrator, shaker, and excited by a white noise. The data acquisition was performed using the software called LabShop® 
and Operational Modal Analysis was performed with the software called OMA® both from Brüel & Kjer (B & K). 
 
2.1 The payload  
 

The VSB-30 is two stages sounding rocket without active control and belongs as result of partnership between the 
Institute of Aeronautics and Space (IAE) and Deutschland fur Luft-und Raumfahrt (DLR). The first stage consists of a 
propellant booster called S31 and the second stage consists of a propellant booster called S30, both stages provide a 
high accelerating the rocket. 

This article refers to the payload dynamic acceptance test (DAT) where the payload is exposed to intense vibration, 
in all three, axes regarding environmental conditions of flight vehicle VSB-30. The structure of the payload was 
fabricated in carbon steel 1020 and has 3300mm in length, 430 mm in diameter and the geometry used to perform the 
analysis, in the OMA software, was discretized into fifteen sections in the radius and twelve rows along the length as 
can be seen in the Fig. 1.  
 
2.2 Experimental setup 
 

Along the structure of the payload, accelerometers, type 4508B, were placed in the X and Y axes and one tri-axial 
accelerometer, type 4520, was placed at the top of the structure.  A schematic drawing of the experimental setup is 
shown in Fig. 1. A single axis vibration test system and a closed-loop vibration control system were employed to 
generate the vibration corresponding to the excitation spectra defined. 

The LDS V964LS shaker has a maximum output force of 89kN and it can excite within a 5-3000Hz range. The LDS 
V964LS power amplifier magnifies the drive signal from the Spectral Dynamics Jaguar shaker controller and sends it to 
the shaker to excite the structure. The acceleration was measured on the slip table along the direction of primary 
vibration excitation and it was used as the feedback control signal; while the control system generates the acceleration 
PSD derived from the excitation spectra. 
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Figure 1. A schematic drawing of the experimental setup. 
 

 
2.3 Vibration Excitation Spectra 
 

In the random vibration, the most common approach to analyze the recorded signal is to decompose it into its 
component frequencies, represented by the power spectral density (PSD) (Harris, 1996). The acceleration PSD proposed 
represent the vibration characteristics in the Y direction as it is shown in Fig. 2. A tolerance of 6 dB was defined in 
the 20 Hz to 2000 Hz frequency range. The RMS acceleration value due the vibration excitation spectra was 12.77 g 
rms, applied along of each vibration axis during 2 minutes.  

Table 1 shows the values used to set-up the shaker control systems and to generate the vibration spectra 
 

Table 1. Profile Table 
 

Frequency Hz Acceleration (gn)²/Hz Slope dB/Oct

20.0 0.004 1.62 

400.0 0.02 0 

2000.0 0.02 - 
 

 

z 

y 
x 
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Figure 2. Vibration excitation spectra 

 
3. RESULTS 
 

Measurements were done in two axes (X and Y axes) in order to compare the symmetry of the structure and to 
obtain the modal parameters.  
 
3.1 X axis 
 

In the X axis, the analysis was done using EFDD method and the modal parameters found are shown in Tab. 2.  It 
was observed a slight circular motion around the axis in a counterclockwise direction with reference to the observation 
from the top of the payload. This circular motion is present in the high frequency modes (4th Mode and 5th Mode). The 
modal shapes of the structure, obtained when the excitation was applied to the X axis, can be seen in the Fig.3 and show 
clear and well defined modes, the damping ratio obtained also show good agreement with the experimental results 
obtained using experimental modal analysis. 

 
Table 2. X axis results 

 
Mode Frequency (Hz) Damping (%) Mode description 
1st Mode: 52 4.05 First bend mode 
2nd Mode: 140  4.1 Second bend mode 
3rd Mode: 224 9.04 Third bend mode 
4th Mode: 432 3.71 Fourth bend mode 
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Figure 3. Modal shapes related to the X axis excitation. 
 

3.2 Y axis 
 

In the Y axis, the analyses were done using EFDD and SSI methods and the modal parameters found were show in 
the Tab. 3. 
 

Table 3. Y axis results 
 

Modes 
Frequency (Hz) Damping (%) 

Mode description EFDD SSI EFDD SSI 
1st Mode: 51.42 51.07 3.5 3.65 First bend mode 
2nd Mode: 141.8 140.6 4.65 2.51 Second bend mode 
3rd Mode: 223.1 223.7 7.35 3.29 Third bend mode 
4th Mode: 403.6 416.4 3.71 1.44 Fourth bend mode 

 
 

As can be seen in the Fig. 4, the modal shapes of the structure, obtained when the excitation was applied to the Y 
axis, show clear and well defined modes and the results of both methods has a good agreements in terms of frequency, 
also compared with the X axis results. The damping ratio, considering the EFDD method agrees with the X axis results 
with slightly difference for the 2nd, 3rd and 4th modes. The analysis done with SSI methods shows results closer to the 
experimental results compared to the EFDD method  and its can be due to the better algorithmic used for the damping 
estimation used in this method and also can be due to the reduction in the frequency range during the analysis. 
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Figure 4. Comparison methods of SSI (in light blue) e EFDD (in red). Dark Blue is related to the static body. 
 

In order to verify the orthogonallity between modes and validate the modal analysis performed at different 
methods presented above, we used the MAC®, that calculates the model assurance criterion and the results of the 
comparison can be seen in Fig. 5.  

 

 
 

Figure 5. MAC comparison 
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The results obtained with the MAC for the first two modes had values above 0.8 showing good correlation between 
the methods, but the following two modes (third and fourth), MAC values were below the limit of 0.8, showing that 
despite modes are similar in shape mode, matrix components by the estimates used did not correlate well. This results 
might be due to the time required for stabilization mode, longest data acquisition time probably cause an improvement 
in the correlation of modes. 

 
4. CONCLUSIONS 
 

This work presents an experimental investigation on the dynamic behavior of the payload of the VSB-30 sounding 
rocket. The measurements were conducted during DAT Test and showed good behavior when subjected to rigorous 
environmental conditions of the launching and flight of the rocket. The identification of the main modes of vibration of 
the payload was presented and analyzed using the software OMA. Two algorithms methods, EFDD and SSI, were used 
to compare the modes found when the excitation was applied to the Y axis of the payload. The results obtained by the 
methods EFDD and SSI showed a rapid stabilization of the poles for the whole frequency range analyzed, thus showing 
a quick and with very clear results. Regarding the result of the MAC ®, the first mode had an excellent orthogonally 
during the comparison; however the high frequencies modes did not have the same good orthogonally. The values of 
damping ratio were similar, for the two axes, when using the EFDD algorithm, but with different values for modes 2nd, 
3rd and 4th compared with the SSI algorithm, however the results were inside the 10% expected for this kind of 
structure. The results obtained, also, show that the payload structure has a spin behavior coupled with the modal shapes 
which could be due to unbalancing forces acting inside the structure. 
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