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Abstract. Hydroelectric power plants are essential in Brazilian energy matrix being considered one of the cleaner 
electric generator processes. The water balance of a reservoir can be obtained through an understanding of the 
behavior of its main hydrological variables: inflow, released through the spillway, turbine discharge and the losses 
(evaporation and percolation). In general, these variables are measured and stored in time series. Through analysis of 
these series it is possible to design a model, allowing the predictions of the future dynamics of the reservoir. These 
series, in the referring to its dynamic, present stationary and non-stationary behavior, being necessary to use specific 
techniques to analyze them. This article presents an analysis of hydrological time series evaluating predictions for 
future behavior. Nonlinear tools are employed with this aim establishing state space reconstruction and time series 
prediction. The method of delay coordinates is employed for the state space reconstruction and the delay parameters 
are evaluated using the method of average mutual information and the method of false nearest neighbors. The simple 
nonlinear prediction is employed to model the time series evaluating the prediction of future values. This approach is 
verified considering known parts of the time series from Tucuruí hydrologic reservoir and afterwards, results are 
extrapolated for future values. 
 
Keywords: Hydrological modeling, time series analysis, nonlinear dynamics, simple nonlinear prediction 

 
1. INTRODUCTION 
 

Hydroelectric plants are essentials in Brazilian energy matrix being considered one of the cleaner electric generator 
processes. The water balance of a reservoir can be obtained through an understanding of the behavior of its main 
hydrological variables: inflow, released through the spillway, turbine discharge and the losses (evaporation and 
percolation). In general, these variables are measured and stored in time series.  

Several research efforts have been dedicated to the study of hydrological models. Different methods have been 
applied allowing the predictions of future values. Among these methods, it is important to highlight (Ashu & 
Avadhnam, 2007): autoregressive methods (AR), auto-regressive moving average method (ARMA), auto-regressive 
integrated moving average method (ARIMA), autoregressive moving average with exogenous inputs method 
(ARMAX). Moreover, Karunasinghe & Liong (2006) used nonlinear prediction through artificial neural network and 
Cheng et al. (2008) combined dynamic interpolation into multilayer adaptive time-delay neural network for long-term 
hydrologic prediction. Hong (2012) presented a brief review of other hydrological model methods. 

This paper deals with the time series analysis related to the hydrologic reservoir modeling. Hydrological variables 
are elected to be representative of the system dynamics and time series analysis is applied to predict future values of this 
variable. The method of delay coordinates is employed for the state space reconstruction and the delay parameters are 
evaluated using the method of average mutual information and the method of false nearest neighbors. The simple 
nonlinear prediction is employed evaluating the prediction of future values. This approach is verified considering 
known parts of the time series and afterwards, results are extrapolated for future values. Nonlinear time series analysis 
employs the TISEAN package (Hegger et al., 1999). 
 
2. RESERVOIR MODEL 
 

Tucuruí is a hydraulic power plant in the state of Pará, the Northern region of Brazil, constructed by Eletronorte 
S.A. It extends from 49o20’ W to 50o W and from 3o45’ S to 5o S. The total area at maximum water level is 2,430 km2. 
The reservoir has a maximum depth of 72 m, with average stream flow of 11,000 m3/s (Deus et al., 2013). 

In order to give an idea concerning the Tucuruí reservoir behavior, five different time series are presented: affluent, 
turbine discharge, spillway discharge, reservoir level and downstream, from 1985 to 2011. The Eletronorte S.A. has 
daily time series evolution since 1984. These series have dynamical behavior that can be classified as stationary or non-
stationary, and each one of them needs a proper treatment with appropriate techniques. This article presents an analysis 
of hydrological time series evaluating predictions for future behavior. Figure 1 shows the five time series related to 
Tucuruí reservoir. 
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Figure 1. Hydrologic time series from Tucuruí hydroelectric reservoir (1985-2011) 
 

3. TIME SERIES ANALYSIS 
 
The basic idea of the state space reconstruction is that a signal contains information about unobserved state variables 

that can be used to predict the present state (Savi, 2006). Therefore, a scalar time series, Sn, may be used to construct a 
vector time series that is equivalent to the original dynamics from a topological point of view. The state space 
reconstruction needs to form a coordinate system to capture the structure of orbits in state space, which could be done 
using lagged variables, nS ,  where  is the time delay. Then, it is possible to use a collection of time delays to create a 
vector in a De-dimensional space, 
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The mutual information method (Fraser & Swinney, 1986) is a good alternative to evaluate the time delay, τ. The 
determination of embedding dimension, De, on the other hand, may be evaluated from the method of the false nearest 
neighbors (Kennel et al., 1992). This reconstructed space can be used for the forecast and the simple nonlinear 
prediction is a good alternative for this aim. The forthcoming sections present a brief discussion of each of the 
employed methods. 
 
3.1  - Method of Average Mutual Information 
 

Fraser & Swinney (1986) establishes that the time delay  corresponds to the first local minimum of the average 
mutual information function I(), which is defined as follows, 
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where )( nS  is the probability of the measure nS , )(  nS  is the probability of the measure nS , and ),(  nn SS

is the joint probability of the measure of nS  and nS . When the measures nS  and nS  are completely independent, 

I() = 0. On the other hand, when nS  and nS  are equal, I() is maximum. Therefore, the analysis of the I() curve 
allows one to determine the best time delay to be used in the state space reconstruction. 
 
3.2  - Method of the False Nearest Neighbors 

 
The method of the false nearest neighbors was originally developed for determining the number of time delay 

coordinates needed to recreate autonomous dynamics, but it is extended to examine the problem of determining the 
proper embedding dimension. In an embedding dimension that is too small to unfold the attractor, not all points that lie 
close to one another will be neighbors because of the dynamics. Some will actually be far from each other and simply 
appear as neighbors because the geometric structure of the attractor has been projected down onto a smaller space 
(Kennel et al., 1992). 

In order to use the method of the false nearest neighbors, a D-dimensional space is considered where the point Un 
has r-th nearest neighbors, r

nU . The square of the Euclidean distance between these points is, 
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Now, going from dimension D to D+1 by time delay, there is a new coordinate system and, as a consequence, a new 

distance between nU  and r
nU .  When these distances change from one dimension to another, these are false neighbors. 

A proper space dimension may be obtained when there are no false neighbors after a dimension increase. 
 

3.3  – Prediction 
 
Prediction is a particular application related to system modeling that has the objective of estimating future values 

from a known time series, called past, NnSn ,...,1,  . Therefore, it is necessary to estimate future time series, 
employing some prediction technique that results in an estimated series: pNNN PPP  ,...,, 21 . Figure 2 shows a 
schematic plot related to the prediction problem. A verification procedure can be performed using known parts of the 
series and establishing a comparison between estimated values with future values associated with the original series in 
order to establish prediction accuracy (Viola et al., 2010). 
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Figure 2. Time series prediction. 

 
In general, techniques for time series prediction may be classified in linear and nonlinear methods. Other 

classification reported in literature considers local and global methods. An overview of the main aspects related to 
nonlinear time series analysis and prediction is provided in the following references: Kantz & Schreiber (1997); 
Abarbanel (1995); Casdagli (1989); Schreiber (1999); Weigend & Gershenfeld (1994); Pinto & Savi (2003). 

Simple nonlinear prediction is based on the state space reconstruction. After the reconstruction, in order to predict a 
time instant nn = 1,..., p) ahead N, it is necessary to define a parameter  that is related to the size of the 
neighborhood  NUV  around point NU . Therefore, for all points nU  closer than  to NU   Nn UVU   look up the 
individual prediction Sn+n. The prediction PN+n is then calculated from the average of the individual predictions Sn+n. 
 

      
 

                 

               (4) 

 
where  NUV  denotes the number of elements of the neighborhood  NUV . Figure 3 presents a schematic 
representation of the simple nonlinear prediction applied to a time series with 10 elements and De = 2. For a parameter 
, points U2, U4, U5, U7 and U8 are inside the neighborhood and hence, the first prediction, 11P , is evaluated from the 
average of these values. 

 

 
Figure 3. Simple nonlinear prediction. 

 
 

4. PREDICTION ANALYSIS OF THE HYDROLOGIC BALANCE OF THE RESERVOIR 
 

Hydrologic time series measured in Tucuruí hydroelectric is used for the analysis developed in this work. This series 
has 9,861 data points corresponding to 27 years (1985 to 2011). Initially, a verification procedure is carried out 
considering two different situations defined by distinct parts of the series: 1985 to 2006 (22 years) performing the 
prediction from 2007 to 2011 (5 years) and 2005 to 2009 (5 years) performing the prediction from 2010 to 2011 (2 
years). These choices are made considering the number of data points and because the turbine discharge series has a 
non-stationary behavior. 

In order to establish the model verification, predicted results are compared with time series and two errors are 
defined: the average error and the daily error (Viola et al., 2010). The average error is defined as follows: 
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where S is the average of the time series and P  is the average of the prediction evaluated during the same period. On 
the other hand, the daily error is defined by the expression: 
 

)( minmax HH
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          (6) 

 
where maxH  and minH are, respectively, the maximum and minimum of the time series. 

 
Initially, a time series corresponding to 22 years corresponding to 8,035 data points (from 1985 to 2006) is of 

concern. The analysis starts by evaluating delay parameters for affluent time series. Figure 4 (upper part) presents 
average mutual information and false nearest neighbors analysis. From these, it is possible to conclude that time delay is 
τ = 104 and embedding dimension is De = 23. Afterwards, simple nonlinear prediction is employed to model the series, 
predicting future values from 2007 to 2011 (5 years). Figure 4 (lower part) presents the original time series together 
with the prediction made by the simple nonlinear prediction and an error histogram that shows the distribution of events 
related to daily error between the series and the prediction. Results show a good agreement between the original and the 
predicted series and it is important to notice that both series have average values that are close (respectively, 10,297.02 
m3/s and 10,084.03 m3/s representing a difference of 2.06 %). 
 

 
 

 
 

 
Figure 4. Affluent prediction (time series from 1985 to 2006). (a) Average mutual information; (b) embedding 

dimension; (c) comparison between original time series and prediction; (d) error analysis. 
 

The same analysis is applied to the other time series (spillway discharge, reservoir level, downstream and turbine 
discharge), and results are showed in Figures 5-8, respectively. Figure 5 presents results to spillway discharge time 
series. It is possible to conclude that time delay is τ = 96 and embedding dimension is De = 57. Results show a good 
agreement in the distribution of events related to daily error between the series and the prediction. Nevertheless, the 
average value for the time series is 2,486.28 m3/s while the prediction has a value of 4,794.99 m3/s, representing a 
difference of 92.85 %. This discrepancy should be better investigated. Figure 6 presents results to reservoir level time 
series. From these, it is possible to conclude that time delay is τ = 107 and embedding dimension is De = 57. Results 
show a good agreement between the original and the predicted series and it is important to notice that both series has 

(a) (b) 

(c) (d) 
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average values that are very close (respectively, 67.77 m and 68.07 m representing a difference of 0.45 %). Figure 7 
presents the results to downstream time series. For this time series, time delay is τ = 99 and embedding dimension is De 
= 31. Once again, results present a good agreement between the original and the predicted series presenting average 
values that are close (respectively, 7.26 m3/s and 7.03 m3/s representing a difference of 3.16 %). 

Figure 8 presents results of the turbine discharge time series. The time series analysis indicates that the estimation of 
the time delay is difficult and the value τ = 172 is not accurate. Besides, the embedding dimension is De = 40. Results 
do not present a good agreement between the original and the predicted series. It is important to notice that both errors 
(daily and average) confirm these results. The original and the predicted series have average values that are not close 
(respectively, 7,778.59 m3/s and 6,807.13 m3/s representing a difference of 12.49 %). 

 
 

 
 

 
 

 

Figure 5. Spillway discharge prediction (time series from 1985 to 2006). (a) Average mutual information; (b) 
embedding dimension; (c) comparison between original time series and prediction; (d) error analysis. 
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(c) 

 
 

 
 

Figure 6. Reservoir level discharge prediction (time series from 1985 to 2006). (a) Average mutual information; (b) 
embedding dimension; (c) comparison between original time series and prediction; (d) error analysis. 

 

 
 

 
 

Figure 7. Downstream prediction (time series from 1985 to 2006). (a) Average mutual information; (b) embedding 
dimension; (c) comparison between original time series and prediction; (d) error analysis. 
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Figure 8. Turbine discharge prediction (time series from 1985 to 2006). (a) Average mutual information; (b) embedding 

dimension; (c) comparison between original time series and prediction; (d) error analysis. 
 

Since predictions of the turbine discharge time series do not present good results, it is important to look for 
alternatives approaches to this aim. The main reason for the bad results is the non-stationary behavior of the time series 
(Coulibaly & Baldwin, 2005; Aguirre, 2007). Chen & Rao (2002) suggested that the non-stationary series may be 
partitioned into stationary segments. Therefore, this time series is split in stationary periods. Under this assumption, it is 
considered a known series from 2005 to 2009 (5 years, with 1,826 data points) in order to perform the prediction from 
2010 to 2011 (2 years). Figure 9 shows the turbine discharge time series for this period. 

 

 
Figure 9. Turbine discharge time series from 2005 to 2009.  

 
The analysis starts by evaluating delay parameters for affluent time series. Figure 10 (upper part) presents average 

mutual information and false nearest neighbors analyses. From these, it is possible to conclude that time delay is τ = 109 
and embedding dimension is De = 15. Afterwards, simple nonlinear prediction is employed to model the series, 
predicting future values from 2010 to 2011 (2 years). Results show a good agreement between the original and the 

(a) (b) 

(c) (d) 
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(c) 

predicted series and it is important to notice that both series has average values that are close (respectively, 8,215.01 
m3/s and 8,297.01 m3/s representing a difference of 1 %). 

 

 
 

 
 

Figure 10. Turbine discharge prediction (time series from 2005 to 2009). (a) Average mutual information; (b) 
embedding dimension; (c) comparison between original time series and prediction; (d) error analysis.  

 
Since the proposed procedures have captured the general behavior of the time series evolution, we are encouraged to 

use this approach to make predictions for future values. Therefore, we use a 27 years time series, from 1985 to 2011, 
with 9,861 data points, establishing a simple nonlinear prediction of 10 years (from 2012 to 2021) for all time series. By 
establishing a linear fit it is possible to observe that the original series and the predicted series showed the same trend 
behavior Figure 11a to 11d, except the turbine discharge time series shown in Figure 11e. Afterwards, for turbine 
discharge prediction we use a 7 years time series, from 2005 to 2011, with 2,556 data points, establishing a simple 
nonlinear prediction of 10 years (from 2012 to 2021). Therefore, by establishing a linear fit is possible to observe that 
the original series and the predicted series showed the same behavior, as shown in Figure 12. 

 

(a) (b) 

(d) 
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Figure 11. Prediction from 2012 to 2021 and linear fit. 
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Figure 12. Prediction from 2012 to 2021 and linear fit. 

 
5. CONCLUSIONS 

 
This paper deals with the nonlinear time series analysis related to hydrologic reservoir. Hydrologic time series from 

Tucuruí reservoir is employed in order to establish a prediction model. State space reconstruction is done using the 
method of delay coordinates and delay parameters, time delay and embedding dimension, are respectively calculated by 
the method of average mutual information and the method of false nearest neighbors. Prediction is performed using the 
simple nonlinear prediction technique. In order to establish the model verification, predicted results are compared with 
time series by the average error and the daily error. Different number of data points is employed for model verification. 
Results show that the method captures the general behavior of the stationary time series. The non-stationary time series 
needs to be partitioned into stationary segments. After this verification, the procedure is employed to establish 
prediction of future values. In this regard, 10 years forecast is performed evaluating the hydrologic reservoir until 2021. 
By establishing a linear fit it is possible to observe that the original time series and the predicted series showed the same 
behavior. The authors agree that the nonlinear tools employed in this work can be useful for the analysis of hydrologic 
reservoir. 
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