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Abstract. The scaling of circular tubes axially impacted by a rigid mass is experimentally studied in the present work.
As a mean to analyse similarity, scaled tubes (models or replicas) made of different material of the full-size structure
(prototype) are used. Since the classical scaling laws does not provide the means to produce proper replicas for this
case, a modification is made in these laws so that it is possible to take the difference in materials into account. However,
despite the correction made to compensate for distortion effects, the results show that the models behave differently from
the prototype, presenting lower reaction forces, lower capacity of absorbing energy, higher displacements, and different
collapse modes. Furthermore, it is shown that material differences and scaling may affect the buckling mode and the fold
length of the tubes.
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1. INTRODUCTION

The understanding of a phenomenon starts from the observation of its nature. At first, one evaluates qualitatively
which parameters have influence on the response of a specific set-up, then starts to modify their values to quantify cause-
effect relations. By analyzing the response while varying the parameters it is possible to define dimensionless numbers
(and dimensionless group), thus finding similar relations for different experiments. The Pi-Buckingham theorem states
that structures having equal predominant dimensionless groups behave similarly, providing the basis for laws relating
structures of different scales. This technique is called Similarity or Scaling Laws (Barenblatt, 2003).

It is well established in many investigations, such as (Booth et al., 1983; Jiang et al., 2006; Jones, 1997) that the direct
application of ”traditional” similarity laws on impact events may lead to unmatched results for model (scaled structure)
representing prototype (full scale structure). One fact attributed to this behaviour is the non-scalability of strain rate effects,
resulting in higher stresses in scaled models, stiffening their response in general. Oshiro and Alves (2009) presented a
way to overcome these limitation by creating a different basis and distorting the scaling laws, modifying initial striker
velocity to take strain rate effect into account. In addition, Mazzariol et al. (2011) stretched the formulation and imposed
striker velocity arbitrarily, compensating energy in impact mass, allowing to overcome impact rig limitations.

Although many advances have been made on the modelling of impact events using models (Yulong et al., 2008;
Christoforou and Yigit, 2009; Snyman, 2010), the use of dissimilar materials is still a challenge. This possibility is of
great interest since it allows to choose a different model construction method compared to prototype as well as may reduce
costs involved due to material and impact rig limitations (Westine and Mullin, 1987; Cho et al., 2005).

In the present investigation the response of an aluminium circular tube axially impacted is compared with models
made of aluminum (scale β = 1/2) and mild steel (β = 1/2 and β = 3/4). The aluminium properties are quite different
from the mild steel, so providing valuable means to analyse the scaling method. For this investigation, the main focus will
be given to the similarity study. In what follows, Section 2 describes the similarity approach, while Section 3 depicts the
experimental procedure. Section 4 discusses the obtained results and Section 5 encloses this article.

2. SIMILARITY

The technique in which a structure scaled by a factor β (model) is used to infer the real size structure (prototype)
behaviour is termed similarity, scaling or similitude. This method has been extensively studied and widely applied in
many fields (Barenblatt, 2003; Baker et al., 1991). For impact phenomena, the main variables scaling factors are long
known and summarized in Table 1. In order to achieve perfect similarity, the Π theorem asserts that all model predominant
dimensionless numbers must be equal to the corresponding prototype dimensionless numbers,

(Πi)m = (Πi)p (1)
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with m and p referring to model and prototype, respectively.

Table 1: Factors relating the model variables to the prototype in Mass-Length-Time basis.
variable factor variable factor
length, L β time, t β

displacement, δ β velocity, V 1

mass, G β3 strain rate, ε̇ 1/β

strain, ε 1 acceleration, A 1/β

stress, σ 1 energy, E′ β3

force, F β2

As mentioned, structures under severe dynamic loads usually do not follow scaling laws due to effects such as material
strain rate sensitivity, material failure, thermal response, gravity etc. When a single geometric scaling factor is not capable
of relating a prototype and a model, it is necessary to define other scaling factors, an approach called distorted similarity.
From that approach Oshiro and Alves (2004) defined a distortion in velocity factor

βV0
=

√
σdm
σdp

=

√
f(βV0

ε̇ncm )

f(β ε̇ncm )
(2)

in terms of β, the length scaling factor; σd, dynamic stress, which is represented here as a function f of initial condition,
V0, β and structural response, ε̇ and, finally, as function of non-corrected or scaled strain rate ε̇ncm = ε̇p/β. Impact mass
is scaled according to βG = β3. Equation 2 does not specify a viscoplastic relation to be used, however the authors used
the Cowper-Symonds equation (Jones, 1997)

σd
σ0

= 1 +

(
ε̇

D

)1/p

, (3)

being σ0, reference flow stress; p and D, viscoplastic material properties. As it can be seen from Eq. 2, the uncorrected
model strain-rate value is needed to define the distorted βV0

, which was calculated using analytical formulation.
Following the same approach, Oshiro and Alves (2009) wrote Eq. 2 in terms of the Norton equation (Lemaitre and

Chaboche, 1991) for the viscoplastic behaviour, σd = σ0 (ε̇/ε̇0)
q , resulting

βV = βq/(q−2) (4)

also defining impact mass factor βG = β3, for model and prototype made of same material. Equation 4 has advantage
over Eq. 2 since calculated βV does not depend on structural response, ε̇. By following these lines, Mazzariol et al. (2010)
modified the impact mass as βG = β3−q to obtain corrected model for βV = 1.

Closer to the present study, Alves and Oshiro (2006) uses a variation of Eq. 2, describing the behaviour of model and
prototype made of different material, using aluminium as model (low sensitivity to strain rate) and steel as prototype,

βV =

√√√√√ σ0m

σ0p

[
1 +

(
ε̇p
D

)1/p] , (5)

where p, D, σ0m ,σ0p are material parameters for Cowper-Symonds equation. As it can be seen, the velocity correction
depends on structural response ε̇p that must be obtained numerically or theoretically.

As means to calculate the velocity factor, the present study used the dimensionless numbers obtained in Oshiro and
Alves (2009)

Π1 =

[
A3G

V 4
0 σd

]
, Π2 =

[
t3σdV0
G

]
, Π3 =

[
δ3σd
GV 2

0

]
, Π4 =

[
ε̇G1/3

(σdV0)1/3

]
and Π5 =

[
σ

σd

]
, (6)
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which were written in VSG basis (initial velocity, V0, dynamic stress, σd, and impact mass, G) instead of commonly used
Mass-Length-Time. Rearranging Π3, one obtains

(Π3)m = (Π3)p →
[
δ3mσdm

GmV0
2
m

]
=

[
δ3pσdp

GpV0
2
p

]
→
(
δm
δp

)3

.

(
σdm
σdp

)
.

(
Gp
Gm

)
.

(
V0p
V0m

)2

= 1 . (7)

Defining βG = Gm/Gp, impact mass G ratio between model and prototype, βV = V0m/V0p , the velocity factor,
dynamic stress factor βσ = σdm/σdp and considering that model has the same deformation pattern as prototype, β =
δm/δp, Eq. 7 can be rewritten as

(β)
3
. (βσ) .

(
1

βG

)
.

(
1

βV

)2

= 1 → β3βσ
βGβ2

V

= 1 → βG =
β3βσ
β2
V

(8)

Similarly, velocity scaling factor can also be calculated

βV =

√
β3βσ
βG

. (9)

Rearranging Π4,

(Π4)m = (Π4)p →

[
ε̇mG

1
3
m

(σdmV0m)
1
3

]
=

[
ε̇pG

1
3
p

(σdpV0p)
1
3

]
→
(
ε̇m
ε̇p

)
.

(
Gm
Gp

) 1
3

.

(
σdp
σdm

) 1
3

.

(
V0p
V0m

) 1
3

= 1 ,

condensing in terms of βG, βV , βσ and writing the strain-rate scaling factor βε̇ = ε̇m/ε̇p,

(βε̇) . (βG)
1/3
.

(
1

βσ

)1/3

.

(
1

βV

)1/3

= 1 → βε̇

(
βG
βσβV

)1/3

= 1 → βε̇ =

(
βσβV
βG

)1/3

. (10)

Inserting Eq. 8 in Eq. 10 results in

βε̇ =
βV
β
, (11)

As mentioned, it is assumed that σd = σd(ε̇ . . .). Then, to solve Eq. 8 or 9 one must write the dynamic stress σd using
a viscoplastic formulation (Norton or Cowper-Symonds, for instance) and consequently obtain the dynamic scaling factor
βσ . By inserting Cowper-Symonds, Eq. 3 into βσ it is generated

βσ =
σ0m

[
1 + (ε̇m/Dm)

1/pm
]

σ0p

[
1 + (ε̇p/Dp)

1/pp
] . (12)

Inserting ε̇m = βε̇ε̇p, and βε̇ = βV /β in Eq. 12, one obtains

βσ =
σ0m

[
1 + (βV ε̇p/βDm)

1/pm
]

σ0p

[
1 + (ε̇p/Dp)

1/pp
] (13)

that also depends on ε̇p and Cowper-Symonds material properties. Both Eq. 13 when used in Eq. 9 while taking βσ0
=

σ0m/σ0m results in the velocity scaling factor:

βV =

√√√√√β3βσ0

βG

[
1 + (βV ε̇p/βDm)

1/pm
]

[
1 + (ε̇p/Dp)

1/pp
] , (14)
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that considers strain-rate effect and different materials. Scaling factors for acceleration βA and time, βt, are obtained by
inserting Eq. 9 in dimensionless numbers Π1 and Π2:

Π1 =

[
A3G

σdV 4
0

]
→ β3

AβG
βσd

β4
V

= 1 → βA =
β2
V

β
, (15)

Π2 =

[
t3σdV0
G

]
→ β3

t βσd
βV

βG
= 1 → βt =

β

βV
. (16)

Naturally, force factor, βF , comes from Newton’s law

βF = βG βA , (17)

and energy factor, from dimensional analysis,

βE = βFβ . (18)

Note that βV , Eq. 13, is a recursive function. Moreover, this approach relays on structural response. In the present
work, Cowper-Symonds constitutive equation was chosen because it represents the aluminium and mild steel behaviour
better than Norton equation does.

3. EXPERIMENTAL PROCEDURE

3.1 MATERIAL PROPERTIES

Material characterization plays an important role when applying similarity laws to represent impact events. Both
quasi-static and viscoplastic behaviour are needed to calculate the initial conditions for experiments in models and hence
infer the prototype comportment. As can be imagined, it is frequently not possible to relate two different material quasi-
static curves using only a scalar. The same difficulty may be easy to observe in viscoplastic behaviour, resulting in scaling
factors as function of structural response. Although the desire is to find the exact solution, one should be inclined toward
an approximation instead of an absence of solution.

The structure chosen as prototype is a circular shell made of aluminium with a external diameter d = 50.8 mm,
thickness t = 2 mm and length L = 150 mm. The models have two scales, β = 0.5 (d = 25.4 , t = 1.0 mm and
L = 75 mm) made of aluminium and steel, and β = 0.75 made of steel (d = 38.1 t = 1.5 and L = 112.5 mm).
Ring specimens with height H ′ = 2t were obtained from the shells and tested under quasi-static compression using a
universal testing machine. The calculated average stress – plastic strain curves are shown in Fig. 1. In addition, the quasi-
static curves from model material were scaled according to each reference stress factor βσ0 and referred as “corrected”.
Since the structural response in terms of deformation is not known, the yield stress was used as reference stress, i.e.,
βσ0

= σYm
/σYp

, so as to not over- or underestimate the model response by assuming a specific average strain value,
which led to a proper representation.

Table 2: Material properties for prototype and models.

β Density Young
Modulus

Mean Yield
Stress σY

βσ0 D(1) p(1)

[–] [103 kg/m3] [GPa] [MPa] [–] [1/s] [–]
Aluminium (Prototype) 1:1 2.71 70 161.2 — 6500 4

Aluminium (Model) 1:2 2.71 70 249.9 1.55 6500 4

Steel 1 (Model) 3:4 7.85 210 308.6 1.91 40.4 5

Steel 2 (Model) 1:2 7.85 210 420.5 2.61 40.4 5

(1) viscoplastic properties are assumed to be classical aluminium and mild
steel, obtained from Jones (1997)

The viscoplastic behaviour is described as function of Cowper-Symonds equation, while the parameters are by assump-
tion the found in literature (Jones, 1997), palu = 4 and Dalu = 6500/s for aluminium, psteel = 5 and Dsteel = 40.4/s
for steel models. The material information needed to calculate initial conditions are shown in Table 2.
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Figure 1: Quasi-static mechanical properties for prototype and models materials. Solid lines represent material averaged
curves obtained in ring compression tests and dashed lines shows these curves divided by βσ0 , i.e., “scaled quasi-static
curves”. Although βσ0

is calculated using the 0.2% yield stress criterium, the models plastic curves are well represented
by using only a scalar.

3.2 INITIAL CONDITIONS

The prototype is aimed to be impacted with a plane striker with a mass of G = 300 kg at a initial velocity of V0 =
4.5m/s. These conditions were defined as a mean to generate axisymmetric progressive buckling of the prototype tube.
For this deformation pattern, the structural response in terms of strain rate, ε̇, is given approximately for a simplified
model by Jones (1997):

ε̇ =
Vavg

4R
, (19)

where Vavg stands for average velocity for a single fold and R, the tube radius. Assuming a constant reaction force
for all folds, the average velocity can be written as Vavg = 0.5V0. Thus applying to Eq. 19 for prototype conditions
(R = 50.8/2 mm and V0 = 4500 mm/s),

ε̇avg = ε̇p =
4500/2

4R
= 22.1/s, (20)

one obtain the average structural response for prototype, ε̇p.
As can be observed in Eq. 14, to calculate βV one must first define a βG value. The prototype impact mass was defined

as 287 kg, as close as possible to 300 kg. The model impact mass values were chosen based on the drop weight masses
available for the experiments and keeping V0 < 8 m/s, a setup limitation. For instance, for steel model β = 0.5, two
different values were chosen: Gm = 56.5 kg (referred as High Speed - HS) and Gm = 118 kg (Low Speed - LS). The
corrected initial conditions for all experiments are summarised in Tab. 3.

3.3 EXPERIMENTS

The tubes were cut under a tolerance of 0.1 mm from the same longer tube for each material. In addition, the faces were
finished by sanding so as to obtain a plain and smooth top and bottom surfaces while keeping sharp edges. The tubes were
freely positioned at the drop hammer, Fig. 2a, while the mass was raised to a specific height and dropped, deforming the
tube, Fig. 2b. Initial conditions of the experiments are listed in Tab. 3. Velocity was measured using a Laser Vibrometer
(Polytec OFV3020/323) aimed on top of impact mass and acquired using a National Instruments (BNC2111) at 100kHz.

The beginning of compression phase was taken as the maximum negative measured velocity and the end of test
was defined as the maximum positive velocity. Displacement and acceleration at the top of the tube were obtained
by integrating and differentiating the velocity data, respectively. Acceleration is then multiplied by mass to evaluate
instantaneous force, which was filtered using moving average. If we assume that all energy lost of the drop mass was
dissipated as deformation of the tube, one has
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Table 3: Initial conditions for prototype and corrected velocity and mass for models.

β [–] Impact Mass, G [Kg] βV
Velocity, V0

[m/s]
Aluminium (Prototype) 1:1 287 — 4.50

Aluminium (Model) 1:2 56.5 1.01 4.55

Steel 1 (Model) 3:4 232 1.26 5.69

Steel 2 (Model) HS 1:2 56.5 1.69 7.59

Steel 2 (Model) LS 1:2 118 1.14 5.14

(a) Test setup. (b) Prototype after test.
Figure 2: Experimental setup.

E =

∫ δmax

0

F dδ, (21)

where F = GA is the instantaneous force; G, impact mass; A the acceleration and δmax is the maximum displacement.
To compare models and prototype, the representative displacement of each scaled model was taken as the mean value of
the tested replicas. The same was made for force values.

In order to directly compare models response to the prototype behaviour, it is necessary to apply the corresponding
scaling factors for displacement, δ, time (Eq. 16), force (Eq. 17), and energy (Eq. 18). Figure 3a shows the displacement
at the top of the tube as a function of time. It can be seen a significant divergence in the models when they are compared to
the prototype. Furthermore, it is noticed a general softening of replicas behaviour. In Fig. 3b the maximum displacement
in all experiments are compared to the expected curve (generated by using the prototype as reference and applying the
scaling factors).

The reaction force versus displacement at the top of the tube is shown in Fig. 4a. As a mean to visualize the curves
tendency, a stronger filter for the data was applied, resulting in Fig. 4b. It can be seen a rather significant difference
in models response; they presented lower values of force and higher displacements in comparison to the prototype. In
these tests, the β = 1/2 aluminium model (dark blue dashed curve) generated the closest response to the prototype (black
continuous curve). Also, both β = 1/2 steel models behaved likewise even with different combinations of impact velocity
and mass. In all cases the peak force took place when the scaled displacement reached about 5 mm. As it will be seen
later, the prototype curve is compatible with the six folds formed during the impact event. The same behaviour is difficult
to observe in models owing to equipment restrictions.

Maximum displacement and average force are summarised in Tab. 4. For the tested cases, both average force and
displacement have low values of dispersion. It can be seen that average force is lower on models (21% lower in steel
models and 12% for aluminium) resulting in larger displacements to absorb the same amount of energy. The higher values
of displacement is due to the less energy absorbed by length in diamond buckling mode (Abramowicz and Jones, 1984) in
comparison to concertina (or axisymmetric) buckling mode obtained in the prototype. This feature can be substantiated
by the energy versus displacement curve (Fig. 5) in which the lower capacity of absorbing energy of the models are
clear. These features are discussed later when the experimented tubes collapse modes are compared. Finally, the absorbed

ISSN 2176-5480

8070



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

20

40

60

80

100

120

140

Time / β
t
 (s)

D
is

pl
ac

em
en

t /
 β

 (
m

m
)

 

 

Prototype
Mod−Alu
Mod−Steel 0.5 LS
Mod−Steel 0.5 HS
Mod−Steel 0.75

(a) Experimental results.

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

Scaling Factor

M
ax

im
um

 D
is

pl
ac

em
en

t /
 β

 (
m

m
)

 

 

Expected
Prot−Alu
Mod−Alu
Mod−Steel 0.50 LS
Mod−Steel 0.50 HS
Mod−Steel 0.75

(b) Expected results according to similarity.
Figure 3: Experimental correlation for Displacement between model results and prototype.
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(a) Low filtered.
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(b) Highly filtered.
Figure 4: Experimental correlation for Force between model results and prototype.

energy shows what can be seen on average force results from Tab. 4, a less stiff model requires more displacement to
absorb the same energy. In addition, steel models (β = 0.5) were not able to deform enough to absorb the same energy,
limited by the effective deformable length.

Table 4: Average results for prototype and models.

Average
Force(1) Favg

Favg/βF Difference
Maximum

Displacement
δmax/β

Difference

[kN] [kN] [%] [mm] [%]
Aluminium (Prototype) 28.52± 0.28 — — 99.86± 1.48 —

Aluminium (Model) 10.01± 0.13 24.92± 0.31 -12.26 115.8± 2.22 15.96

Steel 1 (Model) 39.97± 2.19 23.23± 1.28 -18.54 122.3± 3.78 22.47

Steel 2 (Model) - HS 23.26± 0.99 22.58± 1.66 -24.09 128.7± 8.46 28.88

Steel 2 (Model) - LS 25.26± 1.85 21.65± 0.93 -20.82 127.4± 5.21 27.58

(1) Average force was calculated as mean of the
∫
Fdδ / δmax for each test.
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Figure 5: Experimental correlation for Energy between model results and prototype.

4. DISCUSSIONS

Quasi-static and dynamic material properties differs significantly between models and prototype, Tab. 2. For instance,
quasi-static stress factor, βσ0

, ranges from 1.55 (aluminium model) to 2.61 (steel model β = 0.5). These materials were
purposely chosen so that an analysis of different materials effect could be made.

As earlier observed, the model presented rather different results from the prototype, Figs. 3 to 5. These discrepancies
in force and displacement can be attributed to the different buckling modes produced in the tests, Figs. 6 to 10. It is known
that concertina mode (axisymmetric) absorbs more energy per unit length if compared to diamond pattern (Abramowicz
and Jones, 1984). A priori a comparison between model and prototype tubes response is inaccurate due to differences
in the collapse mode. This is explained by the fact that different geometry configurations are not similar and therefore
cannot be directly compared (Baker et al., 1991).

For axisymmetric collapse mode, another important issue was found during the tests. The theoretical fold length for
this case is given by l = (πRH/

√
3)1/2 (Abramowicz and Jones, 1986; Jones, 1997), being R and H the tube radius

and thickness, respectively, that results in l = 9.60 mm for prototype, and l = 4.80 mm for model β = 0.5. Therefore,
l is dependant of geometry but not material. It should lead to model and prototype similar fold lengths even when the
material is different. However, as it can be seen in Fig.10, they are not proportional since the model used the entire length
to develop 6 hinges (l = 4.92 mm, approximately) whereas the prototype still have an undeformed length at the superior
portion (l = 16.67 mm, approximately). In conclusion, the equation that describes l is missing information regarding
material and scaling effect.

5. CONCLUSIONS

This paper presented a study on scaling of circular tubes made of different materials. A set of aluminium tubes with
diameter of 50.8mm, thickness of 2mm and 150mm height was impacted by a mass of 287 kg at 4.5 m/s and used as
reference (prototype) while three different tubes were used as models (aluminium and steel in half-scale and steel in
three-fourths scale). The differences in material quasi-static properties were taken into account by changing impact mass
according to a formulation presented in Section 2., while the increase in dynamic stress due to strain-rate was considered
by changing impact velocity. Despite of following the distorted equations, models showed to be less resistant and allowed
a larger displacement if compared to prototype, a fact attributed to diamond buckling mode that absorbs less energy
per unit of length. Even though comparing different buckling modes the average force error was less than -25% with
displacement error of 20% which can be deemed as a good result. Finally, further investigation on fold length may allow
researchers to obtain similar global deformation pattern for axially impact circular tubes using model and assuring that
material quasi-static and viscoplastic behaviour are taken into account.
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Figure 6: Prototype made of aluminium. Samples 1-5 from left to right. All except sample #3 buckled as concertina or
axisymmetric mode. Concertina mode developed 6 folds and left enough length for a seventh.

Figure 7: Aluminium models (β = 0.5) buckled as diamond mode. The initial compression phase results in two folds in
concertina mode, followed by unstable diamond folds.

Figure 8: Steel models (β = 0.75). All 7 tubes buckled as diamond mode. The last, #7, reach the maximum of 3
concertina folds.

(a) Low Speed. (b) High Speed. Only one model buckled as concertina mode. In addition, a full
buckled concertina mode spent all tube length to develop 6 folds.

Figure 9: Steel models (β = 0.50). Low and High speed initial conditions were due to impact rig limitations on available
mass. Only one of these seven tubes buckled as concertina, while other developed diamond modes.

Figure 10: Prototype made of aluminium developed shorter folds than model made of steel (β = 0.50). It was expected a
similar global aspect since fold length is usually defined as function of geometrical parameters only (Jones, 1997).
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