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Abstract. The Atomic Force Microscope (AFM) is an indispensable tool in Scanning Probe Microscopy. In its core, a
moving microcantilever beam with a sharp probing tip is used to scan a sample surface. As a result of the atomic-level
interactions between the probing tip and the sample surface to be analysed, the microcantilever beam is deflected. The
deflections of the microcantilever beam tip are detected by a photo detector through the reflection of a laser beam. The
magnitude of the attractive/repulsive interaction forces lies within the range of nano and pico Newtons and, thus, very
precise information may be obtained on the topography of the sample surface. The transversal motion of the microcan-
tilever beam is controlled by a piezoelectric actuator placed at its base, while the another xyz piezoelectric actuator is
responsible for the displacement of the sample. Since the interaction forces between probe tip and sample are highly
nonlinear, their modeling and understanding are very important for the design of the microcantilever beam and effective
control law. This work aims to present a numerical model of a typical AFM microcantilever beam and an analysis of its
response when subjected simultaneously to a controlled actuation at its base and to interaction forces at its tip. In this
preliminary study, the base actuation is considered to be a known harmonic displacement, as in tapping or non-contact
AFM operation mode, while the interactions forces are modeled as van der Waals forces. The microcantilever beam is
modeled using a sliding-free beam finite element model with concentrated inertia at its tip. The effect of damping prop-
erties and interaction force parameters on the resulting motion for a number of sample surfaces situations is analysed
through numerical simulations.
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1. INTRODUCTION

The Atomic Force Microscope (AFM) represents one of the most powerful tools in Scanning Probe Microscopy (SPM)
(Binnig et al., 1986; Meyer, 1992). In the core of the device, a microcantilever drive a probe with a sharp tip over the
sample surface. An optical system (composed by a laser and a photo detector) detects the microcantilever deflections. A
feedback control system is responsible to keep constant the distance/force between tip set point and sample.

Three modes of operation are the most commonly used in AFM: contact, intermittent (tapping) and non-contact mode.
In contact mode, the probe tip is dragged over the sample surface and the actuating forces are predominantly repulsive.
The deflection of microcantilever is then function of the interaction forces between probe tip and sample. In non-contact
mode, the probe tip is kept at a larger distance from the sample to avoid tip or sample degradation and friction related
problems. However, in this case, the interaction forces are also smaller and thus less sensitive to the sample topography. In
tapping mode, the microcantilever is excited by a harmonic excitation at its base so that the probe tip can be closer to the
sample leading to better sensitivity while avoiding or minimizing the issue of tip-sample sticking (of non-contact mode)
and tip or sample degradation (of contact mode). The microcantilever is normally excited near its resonance frequency
and the deflection amplitude of the probe tip is function of the interaction forces between probe tip and sample (Binnig
et al., 1986; Meyer, 1992).

The intermolecular interaction forces between probe tip and sample surface are due specifically to the fluctuations
of electrons in molecules. These interactions are present in molecules polar permanent and are generally the largest
contribution to this forces (Israelachvli, 1991). With an AFM device, it is possible to measure the very small interaction
forces acting between probe tip and sample. At very short distances (< 5Å), the actuating forces are inherently repulsive
(Pauli principle) while, for distances between 5− 10Å, the contributions comes instead from attractive van der Waals
forces.

The complexity of the AFM operation system became an interesting issue in the scientific community, and the use
of mathematical modelling became indispensable for understanding the dynamics and designing more effective control
strategies for the system (Jalili and Laxminarayana, 2004). The literature presents the predominance of discrete models
to represent the probe tip/sample interactions. Mathematical models presented in (Dankowicz, 2006; Misra et al., 2008;
Nozaki et al., 2010; Balthazar et al., 2012; Zhao and Dankowicz, 2006; Rodrigues et al., 2011) and others assume that
the stiffness of the microcantilever may be represented by a spring element and, thus, a one degree-of-freedom system is
considered as composed by a lumped mass (mass of probe tip), lumped damper (representing all sources of damping such
as air or liquid viscous damping) and lumped spring (linear and/or non-linear) and subjected to a point force applied to
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the lumped mass (representing the tip-sample interaction force) and a prescribed base displacement or force (representing
the base excitation).

According to (Fang et al., 2002b), this simplified approach neglects the distributed beam effects as well as the shear
force component at the tip. In (Stark et al., 2004) and (Rutzel et al., 2003), the authors used continuum models to
represent the microcantilever dynamics. In (Howard-Knight and Hobbs, 2011), a dynamic finite element model has been
constructed to simulate the behavior of low spring constant atomic force microscope (AFM). In (Fang et al., 2002a),
analytical solutions to a complex dynamic system were achieved via finite element method. In (Babahosseini et al.,
2009), a finite element model is used and applied to the design of a sliding mode controller. The system is represented
by a sliding-free Euler-Bernoulli beam with lumped mass at its free end where van der Waals forces are considered. For
the base excitation, both prescribed displacement and imposed force are considered and numerical simulations with same
parameters show significant differences between the two methods. The system was also shown to be sensitive to variations
in damping coefficients.

This work aims to present a numerical model of a typical AFM microcantilever beam and an analysis of its response
when subjected simultaneously to a controlled actuation at its base and to interaction forces at its tip. Both prescribed
displacement and force are considered for the base excitation and van der Waals forces are considered for the interaction
between beam tip and sample surface. The microcantilever beam is modeled using a sliding-free beam finite element
model with concentrated inertia at its tip.

2. FINITE ELEMENT MODELING OF THE AFM MICROCANTILEVER BEAM

A standard Bernoulli-Euler beam finite element model was considered to model the AFM microcantilever beam. The
beam is considered to be homogeneous and uniform with length L, width b, thickness h and made of a material with
Young’s modulus E, Poisson’s ratio ν and mass density ρ . As shown in Figure 1, a concentrated inertia, with mass mt
and moment of inertia It , is included at the free end (tip) of the beam where the beam is also subjected to a concentrated
attractive van der Waals force ft . The probe tip is initially set at a distance d from the sample surface.

Figure 1. Schematic representation of the AFM microcantilever beam.

2.1 Finite element discretization of displacements and strains

Considering the standard Bernoulli-Euler hypothesis for a slender beam in xz plane deflection, the displacements field
can be written as

u(x,y,z, t) =−zw′(x, t), v(x,y,z, t) = 0, w(x,y,z, t) = w(x, t), (1)

where w′ = ∂w/∂x is the cross-section rotation angle.
Based on these kinematic hypotheses, the only non-null mechanical strain, that is the normal longitudinal strain εx,

can be written from the usual strain-displacement relation as

εx =−zw′′. (2)

Hermite cubic shape functions are assumed for the discretization of the transverse deflection w(x, t), along the element
length Le, such that a two node finite element with two degrees of freedom per node, namely deflection wi and cross-
section rotation angle w′

i (i = 1,2), is obtained as shown in Figure 2.
The elementary degrees of freedom (dof) column vector ue is defined as

ue =


w1
w′

1
w2
w′

2

 , (3)

ISSN 2176-5480

7937



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Figure 2. Bernoulli-Euler beam finite element.

and the transverse displacement of the cantilever can be written in terms of the elementary dofs as

w(x, t) = N(x)ue(t), (4)

where

N(x) =
[
N1(x) N2(x) N3(x) N4(x)

]
,

N1(x) =
1
2
− 3

2Le
x+

2
L3

e
x3,

N2(x) =
Le

8
− 1

4
x+

1
2Le

x2 +
1
Le

x3,

N3(x) =
1
2
− 3

2Le
x− 2

L3
e

x3,

N4(x) =−Le

8
− 1

4
x+

1
2Le

x2 +
1
Le

x3.

(5)

Using (2), the normal strains can be discretized and written in terms of the elementary dof as

εx =−zBue, with B = N”. (6)

2.2 Variational formulation

The equation of motions can be written using Hamilton’s principle

δΠ =
∫
(δT −δV +δW )dt (7)

where δT and δV are the virtual variations of the kinetic and potential energy and δW is the virtual work done by applied
mechanical forces.

The virtual variation of kinetic energy can be written using the displacements fields defined in (1), such that

∫
δT dt =−

∫ ∫
Ω

δwρẅdΩdt. (8)

Since neither w nor ρ depend on the position in the cross-section yz, the integral over the beam volume can be directly
rewritten as the following integral over length x

∫
δT dt =−

∫ ∫ Le

0
δwρAẅdxdt. (9)

Replacing the transverse displacement w by its dicretized counterpart, defined in (4), yields

∫
δT dt =−

∫
δut

eMeüe dt, (10)

where Me is the elementary mass matrix of the beam, defined as

Me =
∫ Le

0
ρANtNdx. (11)
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The virtual variation of the potential energy is written in terms of the deformation energy of an elementary volume of
the beam as

δV =
∫

Ω
δεxσx dΩ, (12)

where σx is the longitudinal normal stress which, considering a linear elastic material with Young’s modulus E for the
microcantilever beam, can be written as

σx = Eεx. (13)

Substitution of (13) in (12) results

δV =
∫

Ω
δεxEεx dΩ, (14)

which can be written in terms of the elementary dof vector ue, using (6) and integrating over the cross-section area, as

δV = δut
eKeue, (15)

where Ke is the stiffness matrix of the element, defined as

Ke =
∫ Le

0
EIBtBdx. (16)

The second moment of area I of the beam cross-section is

I =
∫

A
z2 dA. (17)

Notice that, in both (11) and (16), the material and geometrical properties of the beam, ρ , E, A and I, may be variable
along beam’s length and, thus, functions of x.

For simplicity, the virtual work done by applied mechanical forces is constructed directly from a known vector of
nodal forces F, such that

δW = δut
eF. (18)

2.3 Equations of motion for the AFM microcantilever accounting for the probe tip

In addition to the variational quantities of the microcantilever beam, the probe tip is considered as a lumped inertia
concentrated at the node located at the free end of the beam. Both mass mt and moment of inertia It , with respect to the
tip node, of the probe tip are accounted for. This is done by including two additional kinetic energy terms corresponding
to the translational kinetic energy, written in terms of deflection w(L, t) at the tip, and rotational kinetic energy, written in
terms of cross-section rotation w′(L, t).

Hence, using equations (10), (15) and (18), summing for all finite elements and including the kinetic energy variations
related to the probe tip, the extended Hamilton’s principle is rewritten as

δΠ =
∫ {

δut (Mü+Du̇+Ku−F)+
[
δw(L, t)mt ẅ(L, t)+δw′(L, t)It ẅ′(L, t)

]}
dt = 0, (19)

whereu is the global dof vector, M, D and K are global mass, damping and stiffness matrices and F is the global applied
forces vector.

Notice that both the deflection and cross-section rotation angle at the beam tip, w(L, t) and w′(L, t), are included in the
global dof vector u and, thus,

w(L, t) = Lwu, w′(L, t) = Lwxu, (20)
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with

Lw =
[
0 · · · 0 1 0

]
, Lwx =

[
0 · · · 0 1

]
. (21)

Replacing (20) in (19) leads to

(M+Mt)ü+Du̇+Ku = F, (22)

where the equivalent mass matrix corresponding to the probe tip, Mt , is written as

Mt = Lt
wmtLw +Lt

wxItLwx. (23)

The ad-hoc damping matrix D included in the equations of motion was considered to be proportional to the microcan-
tilever mass and stiffness matrices, M and K, such that

D = αM+βK, (24)

where the constants α and β must be determined a posteriori.

3. BOUNDARY CONDITIONS

The base excitation and tip-sample interaction forces are implemented as boundary conditions at the base (x = 0) and
at the free end (x = L), respectively, in the finite element model presented previously. For the base excitation, two methods
are considered: prescribed displacement and imposed force. For the tip-sample interaction forces, attractive van der Waals
forces are considered.

3.1 Interactions forces between probe tip and sample surface

In the present work, only van der Waals attractive forces between probe tip and sample surface are considered. This
should be a reasonable approximation as long as the distance between probe tip and sample surface remains larger than
5Å. An expression describing the behavior of these interaction forces between two spherical bodies with smooth surfaces
was developed by Hamaker (Israelachvli, 1991), in terms of the radii of the two spherical bodies, the distance between
them and a constant, so-called Hamaker coefficient, that depends on the material properties of the two bodies.

Supposing that the sample surface could be considered as a spherical body with radius much larger than the one of the
probe tip and that the distance between the probe tip and sample surface is much smaller than the probe tip radius, the
general expression developed by Hamaker can be simplified to

ft =−HR
6r2 (25)

where H is the Hamaker constant, R is the probe tip radius and r is the distance between probe tip and sample surface.
The Hamaker constant may be written as H = π2Cρ1ρ2, where ρ1 and ρ2 are the number of atoms per unit volume in the
each body and C is the interaction coefficient of particle-particle intermolecular potential (Rutzel et al., 2003). Thus, for
known probe tip, the Hamaker constant may vary depending on the material properties of the sample surface. Therefore,
the van der Waals force should be sensitive for changes not only in the distance between probe tip and sample surface
(sample surface topography) but also in the material properties of the sample surface.

In the present case, the probe tip may vary dynamically due to the deflection of the microcantilever and, thus, the
distance between probe tip and sample surface is written as

r(t) = d +w(L, t), (26)

where d is the initial distance, that is for undeformed microcantilever beam, named set point distance, and w(L, t) is the
deflection of the microcantilever beam free end, considered to be equal to the transversal displacement of the probe tip.

Replacing (26) in (25) leads to

ft(t) =− HR
6[d +w(L, t)]2

. (27)

In order to include the van der Waals force into the finite element model, a force vector Ft(t) = bt ft(t) is defined,
where bt = [0 · · ·0 1 0] is a boolean vector that associates the force amplitude ft(t) with the nodal dof corresponding to
the transverse displacement at the free end of the microcantilever beam. This force vector is then included as an applied
mechanical forces vector in equation (22).
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3.2 Base excitation of AFM microcantilever beam

At the other extremity (x = 0), the microcantilever beam is supposed to be clamped to a moving base in transversal
displacement only, so that the beam cross-section rotation angle at this point is set to zero, that is w′(0, t) = 0. Then, two
different approaches were used to account for the transversal motion of the moving base by considering at x = 0: either an
imposed force fb(t) applied by the moving base to the microcantilever beam or a prescribed displacement w(0, t) = z(t)
of the microcantilever beam.

In the case of imposed transversal force at the base of the microcantilever beam, a force vector Fb(t) = bb fb(t) is
defined, where bb = [1 0 · · · 0] is a boolean vector that associates the force amplitude fb(t) with the nodal dof correspond-
ing to the transverse displacement at the base end of the microcantilever beam. This force vector is then included as an
applied mechanical forces vector in equation (22).

In the present work, a known sinusoidal excitation force is considered, such that fb(t) = f̃b sin(ωbt). The excitation
amplitude and frequency are defined in the next section.

In the case of prescribed displacement, the finite element model dof corresponding to the transversal displacement at
the base end is separated from the others, so that the equations of motion (22) are rewritten as

[
δw1 δut

r
]{[Mpp Mpr

Mt
pr Mrr

][
ẅ1
ür

]
+

[
Dpp Dpr
Dt

pr Drr

][
ẇ1
u̇r

]
+

[
Kpp Kpr
Kt

pr Krr

][
w1
ur

]
−
[

fp
Fr

]}
= 0, (28)

where w1(t) is the prescribed displacement at the base end of the microcantilever beam and ur is the remaining unknown
dofs vector. Then, considering that δw1 = 0, since w1 is prescribed, the first line of (28) is automatically solved and the
terms involving w1 can be included as an equivalent force applied to the remaining system

Mrrür +Drru̇r +Krrur = Fr +Fp, (29)

where the equivalent force vector Fp associated with the prescribed base displacement is written as

Fp = Mt
prẅ1 +Dt

prẇ1 +Kt
prw1 (30)

If a known sinusoidal base transversal displacement is considered, such that w1(t) = w̃1 sin(ωbt), the corresponding
force vector Fp is

Fp = [(−ω2
b Mt

pr +Kt
pr)sin(ωbt)+ωbDt

pr cos(ωbt)]w̃1. (31)

The prescribed displacement amplitude w̃1 and frequency ωb are defined in the next section.

4. NUMERICAL SIMULATIONS AND RESULTS

This section presents some initial simulations obtained with the proposed models. The parameters used are in table
1. It corresponds to the interactions of a particle coated with a gold layer on the silicon oxide substrate, the afm tip is
composed by silicon ( Babahosseini et al. (2009)) :
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Table 1. Parameters

Parameter Symbol Value Unit
Length of microcantilever L 449×10−6 m
Width of the microcantilever W 46×10−6 m
Thickness of the microcantilever T 1.7×10−6 m
Young Modulus E 176×109 N/m2

Microcantilever density ρ 2330 Kg/m3

Moment of inertia I 1.8×10−23 m4

Area A 7.8×10−11 m2

Tip radius R 150×10−9 m
Hammaker constant H 1.865×10−19 J
Tip mass Mt 3×10−10 Kg
Tip moment of inertia IMt 23.4×10−22 Kg/m3

Excitation Frequency ωb 9×103 Hz
Tip-sample distance d 7.5×10−9 m
Excitation amplitude f̃b 2×1010 N
Presc. displacement amplitude w̃1 4×10−9 m

The next table presents de five first natural frequencies of the microcantilever calculated considering prescribed dis-
placement and imposed force.

Table 2. Natural frequencies (kHz)

fn Imposed Force Prescribed Displacement
f1 9.1 2.9
f2 75.4 52.6
f3 206.7 167.9
f4 400.4 346.3
f5 651.6 583.8

As seem in table 2, from third natural frequency, the values increase rapidly, it complicates the analysis of the system
responses. The presence of these high frequency complicates the analysis of obtained data, in addition to significantly
increasing the computational cost. To solve this problem, a transformation to the modal base was realized with a modal
reduction. Next sections presents the modal reduction of the system to a new system with 3 degrees of freedom.

4.1 Modal reduction of the system

By equation (22) and assuming (M+Mt) = MT , the system without damping and free of external forces may written
as:

MT ü+Ku = 0, (32)

and the solution is:

u = ϕeλ t (33)

Using (33) in (32), results in a system that can be written as:

(λ 2MT +K)ϕ λ t = 0 (34)

The result of det(λ 2MT +K) = 0 gives

λr = iωr, (35)
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and ωr is the r − th natural frequency. Substitution of (35) in (34) result in an eingenvector ϕr that corresponds to
the r− th vibration mode of system. Considering Φ as a N ×N matrix of the vibration modes ϕi j, is possible to obtain a
modal coordinate q, as a function of nodal coordinates u:

u = Φq (36)

The new equation of motion is:

ΦT MT Φq̈+ΦT DΦq̇+ΦT KΦq = ΦT FT , (37)

Where:

ΦT MΦ = I, (38)

is an identity matrix.

ΦKΦ = Ω2 (39)

the
√

Ω2 is a diagonal matrix with the natural frequencies ωn.

ΦT DΦ = Λ, (40)

Λ is a diagonal matrix where the elements are 2ζnωn.
Lastly,

ΦT FT = FMod , (41)

where FMod is a column force matrix with the contributions of the vibration modes.
In the modal reduced base, considering three vibration mode, the system may be written as:

q̈+Λq̇+Ω2q = Fmod (42)

4.2 Comparison between the results with prescribed displacement and force imposed

The aim of this section is the comparison of the systems with and without the influence of the Van der Waals forces
through time history, phase portraits and Fft analysis. For both systems, the adopted damping parameter is α = β =
1×10−6. For the simulations, 30 beam finite elements was chosen.

a) Prescribed displacement:
This section presents the results of simulation of the system with prescribed displacement. For the system without
the influence of the Van der Waals forces, it is possible to observe the beating phenomenon, and the displace-
ment amplitude is proportional along the time axis. In the presence of Van der Waals forces, the system shows
predominantly negative displacements at the tip, without beating phenomenon.
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(a) Tip displacement without Van der Walls
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(b) Tip displacement with Van der Walls

Figure 3. (a):Tip displacement without Van der Walls, (b):Tip displacement with Van der Waals

The phase portraits confirms the time history analysis, in 7(a) and 7(b) the velocities have the same magnitude, but
the displacements in 7(b) are shifted to the left (negative region) showing a system with irregular behavior.
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(a) Phase portrait without Van der Walls
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(b) Phase portrait with Van de Walls

Figure 4. (a): Phase portrait without Van der Walls, (b): Phase portrait with Van der Walls

Without the presence Van der Waals, the fft presents peaks in the first natural and in the excitation frequency. With
the presence of Van der Walls, new peaks appears, including peaks multiples of 9kHz, phenomenon that reveals the
nonlinearities emerged by the actuation of Van der Walls forces.
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Figure 5. (a): Fft with Van der Walls, (b): Fft without Van der Walls

b) Imposed Force:

For the imposed force approach, the beating phenomenon appears due to the proximity between the natural and
excitation frequencies.
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(a) Tip displacement without Van der Walls
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(b) Tip displacement with Van der Walls

Figure 6. (a):Tip displacement without Van der Walls, (b):Tip displacement with Van der Waals

The phase portraits in 7(a) and 7(b) shows a periodic behavior even with the presence of Van der Walls.
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(a) Phase portrait without Van der Walls
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Figure 7. (a): Phase portrait without Van der Walls, (b): Phase portrait with Van der Walls

The Fft analysis shows only the excitation peak and a small one that is a multiple of the first, representing a
nonlinearity ocurred by the presence of Van der Walls forces
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Figure 8. (a): Fft with Van der Walls, (b): Fft without Van der Walls

With the adopted parameters, a comparison between the system with imposed force and prescribed displacement
may be realized. With prescribed displacement, a strong presence of transient regime can be observed, it happens
because the signal adopted to excite the system have a strong actuation when the movement begins, after a certain
time interval, it starts the permanent regime and stay stabilized. For the imposed force, the presence of Van der
Waals forces are very softly. Next section, shows the simulations of the system with different values for the damping
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coefficients α and β .

4.3 Variation of damping coefficients

This section presents the results with the increasing of the damping coefficients, with values α = β = 1× 10−5 and
α = β = 1×10−4

a) System with prescribed displacement:

In the figures 10(b) and 9(b), the increase of damping effect minimizes the transient region, and leaves the steady
dominate the dynamics of the system.
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(a) Tip displacement α and β in 1×10−5.
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(b) Tip displacement α and β in 1×10−4.

Figure 9. Tip displacement with variation of damping coefficients.

In the FFT, the increased damping reduces the presence of the resonance peaks, leaving only the multiple peaks of
the excitation frequency, emphasizing the non-linearity of the Van der Waals forces
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(a) Fft α and β in 1×10−5.

10
0

10
1

−11

−10

−9

−8

−7

−6

−5

Frequency (kHz)

dB

(b) Fft α and β in 1×10−4.

Figure 10. Fft with variation of damping coefficients.

b) Imposed force:

On the force imposed system, as damping increases, there is a considerable decrease in the amplitude of displace-
ment of the tip.
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(a) Tip displacement α and β in 1×10−5.
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(b) Tip displacement α and β in 1×10−4.

Figure 11. Tip displacement with variation of damping coefficients.

In the fft analysis, there is a reduction in the size of the peak, as well as an attenuation of the effect of Van der Waals
forces.
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(a) Fft α and β in 1×10−5.
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(b) Fft α and β in 1×10−4.

Figure 12. Fft with variation of damping coefficients.

The comparison between both systems shows a different actuation of the damping effects. In the system with pre-
scribed displacement, the effect regulates the displacement of the tip, taking the high amplitude transient. To the imposed
force approach, it greatly decreases this displacement, an effect that may provide no benefit to the operation of the system,
since the vibration amplitude in non-contact mode ranges from 1 to 10nm.

5. CONCLUSIONS

This work presented a numerical model of a typical AFM microcantilever beam and an analysis of its response when
subjected simultaneously to a controlled actuation at its base and to interaction forces at its tip. The base actuation was
considered to be a known harmonic displacement, while the interactions forces were modeled as van der Waals forces.
The microcantilever beam was modeled using a sliding-free beam finite element model with concentrated inertia at its tip.
The effect of base excitation approach, damping properties and interaction force parameters on the resulting motion were
analysed through numerical simulations. Future works will be directed to the inclusion of other approaches for modeling
the interaction forces between probe tip and sample surface, for instance Derjaguin-Muller-Toporov (DMT) model and
Lennard-Jones potential.
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