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Abstract. Some serious cardiac arrhythmias can be characterized on the basis of the nonlinear dynamics approach. In this regard, it 

becomes possible to develop new strategies of analysis and treatments, different from those employed in traditional approaches. In 

this paper we use a mathematical model composed of three modified Van der Pol oscillators connected by time delay couplings to 

reproduce the ECG signals and to analyze dynamics of heartbeats. A continuous chaos control method is then applied to 

pathological ECGs, especially the ventricular fibrillation. The idea is to investigate the effectiveness of this technique to control, 

eliminate or minimize the effects of this pathology. 
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1. INTRODUCTION 

 
The human body consists of several interconnected systems and many of them exhibit nonlinear characteristics and 

chaotic behavior. The heart plays a fundamental aspect in the physiology of living beings and the existence of chaotic 
behavior of heart rhythms are the objective of several research efforts (Christini et al., 2001; Ferreira et al., 2011; 
Garfinkel et al., 1992, 1995; Glass et al., 1983, 1987; Gois & Savi, 2009; Kaplan & Cohen, 1990; Savi, 2005). 

The cardiac conduction system can be treated as a network of self-excitatory elements composed by the sinoatrial 
node (SA), atrioventricular node (AV) and the His-Purkinje system (HP) (Gois & Savi, 2009; Grudzinski & Zebrowski, 
2004). The electric excitation is primarily generated at the SA node, known as natural pacemaker, located at the right 
atrium. It initiates the electrical impulse that spreads as a wave, stimulating both atria. The impulse reaches the AV 
node, which is the electrical connection between the atria and the ventricles. Afterward, electrical impulse goes to the 
His-Purkinje system, which transmit the electrical impulse to myocardial cells, producing simultaneous contraction of 
the ventricles. 

The electrocardiogram (ECG) is the most widely used mechanism to analyze the heart functioning. The ECG signal 
records the electrical impulses related to heart function in the form of waves. The dynamics of the heartbeat has been 
analyzed through both mathematical models and time series analysis (Van der Pol & Van der Mark, 1928; Grudzinski & 
Zebrowski, 2004; Santos et al. 2004). Gois & Savi (2009) reproduced ECGs through a mathematical model consisting 
of three modified Van der Pol oscillators, which represent the SA node, AV node and the His-Purkinje system, 
connected by time delayed couplings. This model is able to reproduce normal and pathological ECGs. Ventricular 
fibrillation was associated with chaotic behavior, as addressed by Stein et al. (1999).  

The control of chaotic heartbeats is a key issue in cardiology. Chaos control is based on the richness of chaotic 
behavior and the most important characteristic is the stabilization of unstable periodic orbits (UPO) embedded in 
chaotic attractor by employing small perturbations (De Paula & Savi, 2009a, b; 2012). Garfinkel et al. (1992; 1995) 
presented a pioneer work related to the application of chaos control method in cardiac rhythms. They employed a 
perturbation feedback chaos control strategy, based on OGY approach, to stabilize cardiac arrhythmias induced by a 
drug called ouabain in rabbit ventricle. Ferreira et al. (2011) employed the ETDF chaos control method to the natural 
pacemaker modeled by the modified Van der Pol equation proposed by Grudzinski & Zebrowski (2004). The main 
objective was to control or to suppress chaotic responses, avoiding critical pathologies. 

In this paper, the ETDF chaos control method is employed to eliminate chaotic cardiac responses associated with 
ventricular fibrillation. The three-coupled oscillator model proposed by Gois & Savi (2009) is employed to describe the 
heartbeat dynamics. The idea is to monitor ECG signals generated by the proposed model, treating two distinct signals: 
normal and ventricular fibrillation. Results show that the ETDF method is able to generate less complex behaviors of 
the ECG.  
  

ISSN 2176-5480

7904

mailto:biaborem@gmail.com
mailto:biaborem@gmail.com
mailto:savi@mecanica.ufrj.br
mailto:savi@mecanica.ufrj.br


Ferreira, B.B.; Savi, M.A. and De Paula, Aline S. 
Chaos Control of the Cardiovascular Dynamics 

2. EXTENDED TIME-DELAYED FEEDBACK CONTROL METHOD  

  
Chaos control methods can be classified as continuous and discrete approaches. Among the continuous control 

methods, the ones that stand out are the time delayed feedback (TDF) (Pyragas, 1992) and extended time delayed 
feedback (ETDF) (Socolar et al., 1994). Among the discrete methods, it is important to highlight the pioneer OGY 
method (Ott et al., 1990). 

The chaos control technique may be understood as a two-stage procedure. The learning stage is the first one where 
UPOs embedded in the system attractor are identified and controller parameters are estimated. The second stage is the 
control stage and consists in the use of control law to impose the perturbation needed to stabilize the desired UPO.  

ETDF is a control strategy applied to systems modeled as follows (Pyragas, 1992; Socolar et al., 1994): 
 

                           

                
                                                                                                                                                  (1) 

 
where   and   are state variables,        and        defines the system dynamics, while        is associated with the 
control action. In the ETDF method, the control perturbation is based on feedback from the difference between the 
present state and the delayed states of the system, being given by: 
 

                   

           
  
               

,                                                                                                                                       (2) 

 
where       ,            , τ is the time delay,       and   are the controller parameters. In general,    is 
infinite, but can be set as a function of the dynamical system. Note that, for any value of   and  , the perturbation of 
the Eq. (2) is zero when the trajectory of the system is on an UPO since              for all   if     , where    
is the periodicity of the  th UPO. According to the correct choice of the values   and   becomes possible to stabilize 
the system in one of its UPOs. The TDF is a particular case of the ETDF when    . 

Note that the dynamical system together with the control law is governed by differential difference equations 
(DDE). The solution of this type of equation can be carried out by considering an initial function          over the 
interval  –       . In this work, this function is estimated by a Taylor series expansion as proposed by Cunningham 
(1954) and shown below: 
 

          .                                                                                                                                                           (3) 
 

Numerical procedure considers the fourth-order Runge-Kutta method with linear interpolation on the delayed 
variables (Mensour & Longtin, 1997). Besides, it is assumed three delayed states,     .  

During the learning stage, the UPO identification is carried out using the close-return method (Auerbach et al., 
1987). Moreover, controller parameters, K and R, are estimated from Lyapunov exponents of each desired UPO (De 
Paula et al., 2012; Ferreira et al., 2011). The calculation of these exponents is carried out by considering a finite number 
of elements (Farmer, 1982). Therefore, the initial function,      , is approximated by   samples. Under this 
assumption, the system is represented by        ODEs, instead of DDEs with   state variables, and the classical 
algorithm proposed by Wolf et al. (1985) is employed.  
 
3. MATHEMATICAL MODEL 

  

Several studies have been developed to model the dynamics of cardiac rhythms. Basically, connected nonlinear 
oscillators may model the heart functioning. Each oscillator represents the cardiac systems associated with: SA node, 
the natural pacemaker; AV node; and His-Purkinje system. The combination of waves coming from the SA node, AV 
node and His-Purkinje system is responsible for ECG aspect. 

In this work, we use three-coupled oscillators to represent the ECG signal following the same idea of Gois & Savi 
(2009). The conceptual model of the cardiac system is presented in Figure 1Figure  where general couplings and 
external forcing are incorporated in order to represent different kinds of behavior.  
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Figure 1. General conceptual model for the cardiac system. 

 
A modified Van der Pol equation proposed by Grudzinski & Zebrowski (2004) is employed to mathematically 

represent the cardiac system. Therefore, the system is governed by the following equations.  
 
       
                        

         
  

                  

      
             

                    
         

       
                        

         
  

                  

      
             

                    
         

       
                        

         
  

                  

      
             

                  

  
                                                                                                                                                                                    (4) 

 
where       ,        and        are harmonic external forces of the type              ;       ,       ,       , 
      ,        and         are coupling constants;   

         , with   representing the delay;        , where   
is the dimension of the system. Note that the coupling terms have time delay,   

 , which represents the time necessary 
for the transmission of signals between different regions of the heart. 

Gois & Savi (2009) suggested that the ECG signal is formed by the composition of individual signals of the 
oscillators, and its representation can be done by a linear combination of each oscillator signal as follows: 
 

                       .                                                                                                                       (5) 
 

And, similarly, is defined: 
 

   
      

  
               .                                                                                                                             (6) 

 
3.1 ECG signals 

  
This section deals with numerical simulations of the proposed model showing its capacity to describe some typical 

ECG signals. Our main goal is to show a qualitative agreement with experimental ECG signals, especially the normal 
and some pathological signal related to chaotic behavior. 

In all simulations time steps are defined as      
    , with        and         . Moreover, the 

following initial conditions are adopted:                                   = [-0.1  0.025  -0.6  0.1  -3.3  
10/15]. 
 
3.1.1 Normal ECG  

  
Normal ECG is now in focus by considering the following parameters:      ,       ,          ,        , 

        ,      ,         ,          ,      ,         ,      ,          ,        ,      , 
        ,        ,           ,          ,          ,         ,          ,           , 
           . Note that this is related to a conceptual model with unidirectional couplings as presented in Figure 2.  
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Figure 2. Conceptual model of the normal ECG. 

 
Figure 3 shows the comparison between numerical simulations and an experimental normal ECG obtained from the 

database “Physionet” (www.physionet.org/physiobank/database/#ecg). It is noticeable that numerical ECG captures the 
general behavior of normal ECG, showing good agreement with real data. Furthermore, analyzing the detail of a cardiac 
cycle, shown also in Figure 3Figure , it is observed that numerical ECG presents the three basic waves: P wave, QRS 
complex and T wave. 

  
Figure 3. Comparison between numerical and experimental data of the normal ECG. 

 
Figure 4 presents two-dimensional projections of Poincaré sections of normal ECG. The regular behavior is 

observed pointing to a quasi-periodic response due to the closed curve aspect.  
 

    

    
Figure 4. Poincaré section projections related to normal ECG: (a) ECG, (b) SA node, (c) AV node and (d) His-Purkinje 

system. 
 

(a) (b) 

(c) (d) 
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The estimation of Lyapunov exponents furnishes the following final values: 
                       . This result confirms the quasi-periodic response observed in the Poincaré 
section.  
 
3.1.2 ECG with Ventricular Fibrillation 

  
Ventricular fibrillation is a severe cardiac arrhythmia usually associated with chaotic and irregular ventricular 

contraction (Dubin, 1996). This behavior causes a lack of synchronization necessary for the proper functioning of the 
heart. This pathological behavior of the heart is critical being responsible to death. ECG related to ventricular 
fibrillation has irregular aspect as shown by experimental data in Figure 5. It is noticeable the irregular pattern that can 
vary from different measures.  

 

 
(www.geicpe-tripod-com) 

 
(www.nigeriandoctor.com) 

 
(www.ecg.med.br) 

Figure 5. Experimental ECGs of patients with ventricular fibrillation. 
 

In order to reproduce the ECG with ventricular fibrillation, it is considered the conceptual model shown in Figure 6. 
The model parameters are similar to the one used for normal ECG, except for the parameters related to the SA node 
(Ferreira et al., 2011):        ,          ,        ,       and      . Besides, external excitation is 
considered by assuming the following parameters:        ,                        ;        ,      . 

Figure 7 shows numerical simulations related to the ventricular fibrillation ECG. Note the irregular pattern that 
properly represents the qualitative behavior of the experimental ECGs. Phase space and the Poincaré sections are 
presented in Figures 8 and 9. It is clear the chaotic-like structure of results showing an irregular behavior and Poincaré 
sections with fractal-like structure.  

 

 
Figure 6. Conceptual model of the ECG with ventricular fibrillation. 

 

 
Figure 7. Numerical simulation of the ECG related to ventricular fibrillation. 

 
The estimation of Lyapunov exponents is an important tool to assure the chaotic behavior of the system:   

                          . Note that there are two positive values that confirm the chaotic nature of 
this pathology. 
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Figure 8. Phase space projections related to ECG with ventricular fibrillation: (a) ECG, (b) SA node, (c) AV node and 

(d) His-Purkinje system. 
 

    

    
Figure 9. Poincaré section projections related to ECG with ventricular fibrillation: ECG (a), (b) SA node, (c) AV node 

and (d) His-Purkinje system. 
 
4. CHAOS CONTROL APPLIED TO CARDIAC SYSTEM 

  
The ETDF approach is now applied to the heart rhythms. The goal is to control the ventricular fibrillation ECG. 

Under this assumption, we consider system perturbations that avoid this pathology. The control action is included in the 
natural pacemaker, the SA node. The most interesting idea would be to stabilize an UPO related to the normal ECG. 
Nevertheless, we choose a period-2 UPO in order to observe the general behavior of the controlled system, trying to 
avoid critical pathological behavior of the cardiac system.   

The control action, represented by        , is applied at the SA node (natural pacemaker) and the system dynamics 
is governed by the following equations. 
 
 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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(7) 
  

The controller adopted a wait time approach to start its actuation. This means that the actuation only starts when the 
system visits the neighborhood of the desired UPO. This is a standard procedure for discrete chaos control methods (De 
Paula & Savi, 2012) and presents good results in cardiac systems (Ferreira et al., 2009).  

After UPO identification, it is necessary to define controller parameters,   and  , which is done by the calculation 
of maximum Lyapunov exponents for each desired UPO, in this case a period-2 UPO. Figure 10 shows the identified 
orbit through the two-dimensional projections of the phase space. Figure 11 presents the maximum Lyapunov 
exponents, considering          , corresponding to the periodicity 2. Note that there are regions associated with 
negative values of Lyapunov exponents, where it is possible to stabilize UPOs with proper choices of parameters   and 
 . 
 

    
Figure 10. Identified period-2 UPO: (a) SA node, (b) AV node and (c) His-Purkinje system. 

 

 
Figure 11. Period-2 UPO: maximum Lyapunov exponents. 

 
The controller performs the stabilization of the period-2 UPO adopting     and      . Figure 12 shows the 

uncontrolled (ventricular fibrillation - dashed black line) and the controlled (pink line) ECGs. Figure 13 shows the same 
behavior by observing phase space projections. Figure 14 presents the control action imposed to the system. It is 
observed that it is possible to minimize the effects of ventricular fibrillation in chaotic cardiac system using small 
perturbations. 
 

 
Figure 12. ECG related to ventricular fibrillation and the stabilization of a period-2 UPO: uncontrolled (dashed black 

line) and controlled (pink line) responses using     and      . 
 

(a) (b) (c) 
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Figure 13. Phase space projection of the ECG related to ventricular fibrillation and the stabilization of a period-2 UPO: 
uncontrolled (black line) and controlled (pink line) responses using     and      . (a) ECG, (b) SA node, (c) AV 

node and (d) His-Purkinje system. 
 

 
Figure 14. Control action for the stabilization of a period-2 UPO. 

 
4.1 Chaos suppression 

  
The stabilization of an UPO embedded in chaotic attractor is very convenient since this orbit belongs to system 

dynamics and, therefore, its stabilization requires less controller effort. Nevertheless, there are some situations where 
this is not possible. In these cases, chaos suppression is an interesting alternative in order to avoid critical pathological 
behavior of the cardiac system. The major difference between both cases is that chaos suppression is associated with 
larger control efforts. This procedure evades the central idea of chaos control that uses small perturbations but it is 
useful for health issues.  

Let us employ some controller parameters that can promote control without think in terms of UPOs. Under this 
assumption, the following parameters are employed:       and    . Figure 15 shows the ECG record of the 
uncontrolled (ventricular fibrillation - in black) and controlled (in pink) responses. Figure 16 shows the phase space 
projections related to both responses while Figure 17 presents the control action. 

Obtained results show that controller is able to suppress the chaotic behavior of the ventricular fibrillation. However, 
it should be highlighted that the stabilized orbits are not related to natural orbits and, as a consequence, controller efforts 
are greater than situations where orbits that belong to system dynamics are stabilized. 
 
 

(a) (b) 

(c) (d) 
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Figure 15. ECG related to ventricular fibrillation and the chaos suppression: uncontrolled (dashed black line) and 

controlled (pink line) responses using       and    . 
 

    

    
Figure 16. Phase space projections related to ventricular fibrillation and the chaos suppression: uncontrolled (black line) 

and controlled (pink line) responses using       and    . (a) ECG, (b) SA node, (c) AV node and (d) His-
Purkinje system. 

 

 
Figure 17. Control action for the chaos suppression using       and    . 

 
5. CONCLUSION 

 
This work deals with the application of the extended time delayed feedback chaos control method to cardiac system 

modeled as a three-coupled oscillator, connected with time delay couplings. Cardiac behavior is analyzed by 
considering ECG signals and two different situations are treated: normal and ventricular fibrillation, which is associated 
with chaos being a critical pathological behavior of the heart. The basic idea is to employ ETDF method to avoid this 
critical behavior. We stabilize some UPOs embedded in the chaotic attractor, analyzing the resulting ECG. In general, it 
is possible to say that the ETDF is successful applied generating less critical behaviors of the heart with small control 
efforts. An alternative approach is also investigated in order to suppress chaos with higher control efforts, by stabilizing 
orbits that do not belong to system dynamics. Thus, the application of ETDF method is an interesting approach to avoid 
critical behaviors as ventricular fibrillation with small control efforts. Situations where it does not succeed can be easily 
solved by increasing the control effort, which leads to the suppression of chaotic response. 

 

(a) (b) 

(c) (d) 
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