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Abstract. Rotor machines are rather simply, thus obtains a wide application in several industrial areas. Researches 
about rotors seek to avoid the vibrations that occur when it is in critical operation conditions, which can damage other 
devices that are connected. The objective of this paper is realize rotor dynamics comportment analysis using 
simulations, working with finite elements, achieving curves and comparing with experimental setup, where it can have 
two types of setups, with two rigid bearings and another with one rigid and other flexible bearing using springs with 
shape memory alloy. The simulations were derived via computer programs such as Matlab platform, which was 
obtained by finite element analyzes and curves in time and frequency, and ANSYS, where can obtain the deformation 
the material may suffer during test conditions. The experimental data were achieved through equipments of dynamic 
analysis and computers connected by sensors in experimental bench. We can conclude that analysis of that system can 
be appropriate to control, prevention and maintenance of this rotating devices, so as to achieve a decrease of costs to 
industry. 
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1. INTRODUCTION 

 
Rotating machines are used in many applications, having the rotor is the simplest. Following the ISO definition, 

rotor is a body suspended by a set of roller bearings, that allows it to rotate freely about a fixed axis in space. According 
to Pereira (2003), the capacity to transmit high energies being a small equipment is of great interest, where this energy 
comes from the high speed at which the rotor bearing system may be subjected. The rotor bearing system is usually 
constituted basically of the following elements: shaft, bearing and disc. The disc can be assumed as a rigid element, 
which is characterized only by kinetic energy. The disc is located where the rotor undergoes the highest amplitudes 
during rotation of the system. In some instances the rotor may have more than one disc. The shaft is usually circular and 
symmetrical, and is mounted with the disc, supported on bearings. It is characterized by kinetic and potential energy, 
getting the parameters of stiffness, mass and damping. The bearings represent the points where the shaft will be 
supported, and it can be divided by balls, rollers, hydrodynamic or aerostatic bearings. The bearings are characterized 
by the virtual work of the forces acting on the shaft, which due to contact both generate forces of restitution in the 
bearing. The unbalanced mass, is characterized by kinetic energy, it is usually related to the disc itself. By more than 
unbalanced mass is not an element of the rotor, but it can be used to correct unbalances, thereby reducing the vibration 
system.  

A representation of this assembly contains the shaft, disc and bearings (rigid and flexible) is illustrated in Fig. 1. 
Also is considered some residual unbalance in the system. 
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Figure 1. System axis-rotor-bearing (adapted by He et al., 2007) 
 
The unbalance is the greatest cause of vibrations in rotating machines and this phenomenon is characterized by the 

existence of unbalanced mass in relation to the axis of rotation (Lamin Brito, et al., 2006). Such unbalances are caused 
by inevitable asymmetries, tolerances and deviations in shape, in addition to the imperfections of the raw material and 
assembly.  

When the system is unbalanced can generate undesirable behaviors, which can cause extensive damage to other 
equipments that are interconnected. 

Thus arises the need to study the dynamics of rotors for a better understanding of vibration signals and achieve 
improved models for the system. Therefore the method of finite element is quite attractive due to close approximation 
of reality models. The utilization of smart materials for rotor systems is of particular interest since they can provide 
better performance while avoiding many undesirable behaviors. Silva et al. (2012), show that shape memory alloys 
(SMAs) represent an interesting alternative where adaptive characteristics and high dissipation capacity are required. 

Borges et al (2012) currently has studied the application of new materials made from special alloys, such as 
actuators for dynamic systems in order to reduce the vibrations in a frequency range due to the resonance region. In this 
regard, the use of components of active materials such as Smart Memory alloys (SMA) which are "smart", capable of 
regaining its original shape when the temperature change and/or mechanical stress and, the main characteristic, a high 
capacity variation of the stiffness and damping can be incorporated to attenuate the vibration. 

Therefore this paper aims to analyze the rotor dynamics simulations using a dedicated system, obtaining the curves 
of frequency response and corresponding amplitudes. The main motivation is to explore the methods implemented in 
computer simulations, in order to compare the data obtained in the experimental setup, where it can have two sets of 
bearings, rigid bearing and another with a flexible bearing using SMA springs. 
 
2. MATHEMATICAL MODELING 

 
To perform the simulations is necessary to obtain the mathematical model of the rotor-bearing system, where was 

used Finite Element Method. Initially it was found the kinetic energy, potential and forces that were applied to the 
elements of the system, as described by Lalanne (1990). 

 
2.1 Finite Elements Method 

 
According to Rao (2011), this methods allow more accurate predictions, reducing the cost of experiments and 

simulation, thus achieving cheaper and more accurate designs before testing prototypes. Through this method can be 
found matrices of mass, stiffness, damping, the gyroscopic effect mass and unbalanced. In this method is used the 
energy equations for each element, and without the generalized coordinates, but with the degrees of freedom available 
in the element. For the derivation of the equations of motion of the rotor, just apply the Lagrange equation in the kinetic 
energy, potential and forces the system. The general equation is given as: 
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Where (1 ≤ i ≤ N) is the numbers of degree of freedom,   is the displacement vector and º indicates differentiation in 

relation to time. These equation follows a procedure used by Santiago (2003). In the case of the disc element, as it has 
four degrees of freedom, u, w, θ, and ψ, Fig. 2: 
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Figure 2. Representation of disk (Pereira 2003) 
 
Assuming that the kinetic energy of the disc is obtained using Lagrange has to the following equation: 
 
 

  
 
   

     
   

  
                                              (2) 

 
where [  ] is the classical mass matrix and [  ] is the gyroscopic matrix.  
To shaft matrices, first is shown that this have to be divided through nodes, as shown in Fig. 3: 

 

 
 

Figure 3. Representation of shaft. (Lalanne, 1990) 
 
Through Fig. 3, it can be noted that each node has four degrees of freedom thus forming the nodal displacement 

vector. Knowing that the displacements ψ and θ are derivations of u and w, with this information, and according to Fish 
and Belytschko (2007), is obtained the shape functions of the element shaft. The equation for kinetic energy of the shaft 
is given by: 

 

   
  

 
        

             
          

 

 

  

 
      

   
 

  

   

  
        

   
 

  

   

  
      

 

 

 

          
   

 

  

   

  
           

 
              (3) 

 
where   is the density,   transversal area,    and    shape functions,   inertia moment,   angular velocity and   

length. Making the necessary integrations and applying Lagrange, is obtained: 
 
 

  
 
   

     
   

  
                                  (4) 

 
where [ ] is the classical mass matrix, [  ] effect of inertia matrix and [  ] gyroscopic matrix.  
To potential energy, have to make the same procedure: 
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where   is the elasticity modulus and    external force. 
Making the necessary integrations and applying Lagrange, is obtained: 
 
  

  
                        (6) 

 
where [  ] is the classical stiffness matrix and [  ] axial force matrix. 
 
As for bearing is simpler to find the matrix, because having the force equation, the matrix is obtained directly:  
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Considering the first the matrix of stiffness and the second matrix of damping, where they can be symmetric, when 

        e        , or asymmetric when         e        . 
In the case of unbalanced mass matrix is also obtained directly, applying the Lagrange in the equation kinetic energy 

of the unbalanced mass, we obtain the following matrix. 
 

 
  
  

        
          
          

                             (8) 

  
where Ω is the angular velocity and α is the angular position with respect z axis. 

 
3. MATERIALS AND METHODOLOGY 

 
3.1 Materials  

 
Was used data and geometric parameters of the experimental setup existent in LVI (Laboratory of Vibration and 

Instrumentation - UAEM / UFCG), Fig. 4, which is composed of a system rotor shaft bearing, which is assumed 
initially that bearings are rigid. The system also features a frequency inverter, Mline WEG, and motor, WEG W22 plus, 
it has the maximum speed of 3330 rpm. Data for experimental setup are shown in Tab.1 and Tab. 2. 
 

 
 

Figure 4. Experimental setup (LVI-UAEM-UFCG) 
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Table 1. Disk and shaft data. 

 
 Disk Shaft 

 Mass 2.107 kg 0.30 kg 
Position 0.21 m - 

    0.0126 m 0 
     0.15 m 0.0126 m 

Length - 0.42 m 
Thickness 0.0171 m - 
Stiffness - 1.6527 E5 N/m 
Damping - 2.3 E-4 N s/m 

 
Table 2. Bearings and unbalanced mass data. 

 
 Bearing Unbalanced Mass 

Mass - 0.001 kg 
Position   =0 ;   =0.42 m 0.21 m 
Stiffness    =   =2.22 E6 N/m - 
Damping    =   =2.84 N s/m - 

Stiffness (Martensite)    =   =11049 N/m - 
Damping (Martensite)    =   =10 N s/m - 
Stiffness (Austenite)    =   =16976 N/m - 
Damping (Austenite)    =   =5 N s/m - 

 
3.2 Methodology 

 
For simulations were used as computational software Ansys and Matlab where the methods and data presented 

experimental setup use three different bearings configurations: 

 Bearings Rigid-Rigid 
 Bearings Rigid-SMA Martensite 
 Bearings Rigid-SMA Austenite. 

To apply in the Matlab the finite element method, was implemented subroutines of the program and the shaft was 
divided into 5 nodes and the placement of these nodes placed symmetrically. The program also requires the placement 
of the disc and bearings, which was thus obtained a close approximation of the actual model. 

For software ANSYS, it was necessary to use the modulus of elasticity, Poisson's ratio and density of the shaft. For 
the disc is inserted the mass, inertia polar and diametrical. In case the bearing was only necessary damping and stiffness 
data. Thus the system was divided into 10 elements, where the shaft is partitioned into 11 nodes symmetrically, and 8 
more were included the springs bearing, following the model used by Lalanne (1990). 

At this software was performed modal analysis and harmonic excitation, where in the latter was included a mass 
unbalanced on disc, at a distance equal to the radius of the disc relative to the center, and simulating the system with a 
rotation speed of 50Hz because this rotation it passes through the first natural frequency. 

The modal analysis experiments were made using impact tests with instrumented hammer and the dynamic signal 
analyzer 35679A Agilent , Fig. 5, consisting of: 

 Accelerometer (PCB 3528B10 SN 34589); 
 Impact hammer (PCB 086C03); Maximum voltage 20-30 VDC, maximum strength 2224 N (pk), sensitivity 

2.25 mV/N, resonance frequency exceeding 22.5 kHz. 
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Figure 5. Instrumentation of dynamic signal analysis. 
 

For modal testing the system has been maintained static and to perform analyzes the accelerometer was placed in the 
left bearing in horizontal and vertical directions and the impact hammer was given on disc, because it is the center 
position of the rotor and the point which suffers the highest amplitudes. In this experiment were obtained response 
curves in the time and frequency. After all the data obtained through each method, was performed a comparison of 
results, to thereby, evaluate what criterion was the closest experimental tests for system validation. Fig. 6 illustrate a 
schematic representation of the procedure followed. 

 

 
 

Figure 6. Schematic representation of the analysis.  
 
4. RESULTS AND DISCUSSIONS 

 
For simulations by finite element following programs were used, Matlab and Ansys. In the first program, all data, 

Tab. 1 and Tab. 2,  from the experimental setup,  Fig. 4, were inserted. Thus was possible to obtain the following curves 
(Fig 7, 8 and 9), is possible to note the differences in stiffness for the three cases, just analyzing the amplitudes on the 
bearings in all figures of vibrations modes: 
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Figure 7. (a) Vibrations modes; (b) response curve with unbalanced mass, Matlab. 
 

    
 

Figure 8. Bearing with SMA martensite (a) Vibrations modes; (b) response curve with unbalanced mass, Matlab. 
 

    
 

Figure 9. Bearing with SMA austenite (a) Vibrations modes; (b) response curve with unbalanced mass, Matlab. 
 
For Ansys, after entering all necessary data previously described, we performed a modal analysis thus obtaining the 

first three vibration modes of the system, as shown in Tab 3, 4 and 5. 
After the modal analysis was performed harmonic analysis and thus obtained the frequency response curve, as 

shown in Fig. 10. 
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Figure 10. Response curve with unbalanced mass applied; (a) Rigid bearing; (b) Bearing with SMA martensite phase; 
(c) Bearing with SMA austenite phase, Ansys. 

 
Having the simulation results began experimental tests to compare the results. After performing the test, the data 

were placed in Matlab in order to obtain a better view. Was obtained a curve of the free vibration response time and the 
respective frequency response. 
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Figure 11. Experimental response with dynamic signal analyzer response in frequency  (a) Rigid bearing; (b) Bearing 
with SMA martensite phase; (c) Bearing with SMA austenite phase. 

 
The difference between the natural frequencies shown in curves is due the bearings, because was tested three cases, 

with rigid bearing, Figs. 7, 10(a) and 11(a), and two flexible bearings, one using a SMA in martensite phase, Figs. 8, 
10(b) and 11(b), and another one using SMA in austenite phase, Fig. 9, 10(c) and 11(c). In this case the stiffness of each 
one is different, being the rigid bearing stiffer than others. Therefore the natural frequency is highest. The bearing with 
SMA in martensite phase is the more flexible, because it has the lowest stiffness and natural frequency. 

Obtained all results, simulated and experimental, a comparison was made between the natural frequencies and the 
corresponding vibration modes between different methods adopted, as Tabs. 3, 4 and 5. 

 
Table 3. Natural frequencies with bearing. 

 
 Ansys 

Hz 
Matlab (FEM) 

Hz 
Experimental  

Hz 
Error (%) 

Ansys x Matlab Ansys x Experimental 
Wn (1ª mode) Hz 41.56 41.02 41.04 1.29 1.24 
Wn (2º mode) Hz 237.76 223.54 238.00 5.98 0.10 
Wn (3º mode) Hz 821.51 830.87 804.40 1.14 2.08 

 
Table 4. Natural frequencies with bearing SMA martensite phase.  

 
 Ansys 

Hz 
Matlab (FEM) 

Hz 
Experimental  

Hz 
Error (%) 

Ansys x Matlab Ansys x Experimental 
Wn (1ª mode) Hz 23.98 23.55 24.63 1.79 2.71 
Wn (2º mode) Hz 139.43 135.75 147.80 2.64 6.00 
Wn (3º mode) Hz 322.50 311.15 320.10 3.52 0.74 

 
Table 5. Natural frequencies with bearing SMA austenite phase. 

 
 Ansys 

Hz 
Matlab (FEM) 

Hz 
Experimental  

Hz 
Error (%) 

Ansys x Matlab Ansys x Experimental 
Wn (1ª mode) Hz 27.50 27.01 27.09 1.78 1.47 
Wn (2º mode) Hz 148.15 143.70 156.00 3.00 5.30 
Wn (3º mode) Hz 327.50 316.97 344.80 3.22 5.28 

 
Thus it can be seen positive results, obtaining small errors on the order of up to 2% compared to the first natural 

frequency obtained by the methods used. Thus it can be noticed that the methods used and the simulations are consistent 
with the physical model. The differences between simulations and experimental in flexible bearing cases, can be 
because of the bearing stiffness, due to difficulty to use the number of turns compatible with the stiffness calculated. 

 
5. CONCLUSIONS 

 
This paper presented a dynamic study of a rotor-bearing system dedicated, using data from an experimental setup 

that is available in the LVI-UAEM-UFCG, aiming to obtain important parameters such as natural frequencies and mode 
shapes when subjected to three different configurations. At a later stage aims to implement a system of vibration control 
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while passing by one of these critical frequencies. Analyzing and comparing the simulated results obtained with the 
experimental analysis, we obtained quite satisfactory results with small margin of error, especially for the first mode. 
The largest margin of error for the other two modes can be justified because the conditions applied in the simulation, 
which was treated both bearings identical, with equal stiffness in the directions x and z. In the experimental setup 
bearings contains greater stiffness in the vertical direction than in the horizontal, and are different due to their geometry. 
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