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Abstract. Due to its simplicity and good statistical results, the Monte Carlo (MC) method is the most commonly
technique used for uncertainty quantification. However, its computational cost is significant, and, in many cases,
prohibitive. Fortunately, the MC algorithm can be can be parallelized, which may allows its use in complex
simulations. In this sprit, this work presents a methodology for the parallelization of MC method in a cloud
computing setting. The methodology is illustrated on a stochastic problem of structural dynamics, and the
simulation results show good accuracy for low-order statistics. Also, this methodology shows a good performance
in terms of processing-time and storage space usage.
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1. INTRODUCTION

Nowadays, most of the predictions that are necessary for decision making in engineering, economics, actu-
arial sciences, etc., are made based on computer models, which are subjected to uncertainties due to wrong
assumptions made on their conception and/or variabilities on model parameters (Soize, 2013). The most suc-
cessful approach to take into account these uncertainties is one that uses the probability theory to describe the
uncertain parameters as random variables, random process, and/or random fields. This approach allows one to
obtain a model where it is possible to quantify the variability on the response. For instance, the reader can see
Ritto et al. (2013), which apply techniques of stochastic modeling to describe the dynamics of a drillstring. It is
also worth of mentioning the contributions of Zio and Rochinha (2012), in the context of hydraulic fracturing,
Lopes et al. (2012), for estimation of financial reserves, Clément et al. (2013), for the analysis of structures built
by heterogeneous hyperelastic materials.

To compute the propagation of uncertainties of the random parameters through the model, the most used
technique in the literature is the Monte Carlo (MC) method (Robert and Casella, 2010). Among the good
features of the MC method we can highlight the guarantee of convergence and its non-intrusive nature, which
allow us to perform the simulation of the stochastic model using only a deterministic code, which is executed
several times. Unfortunately, the MC is a very time-consuming method.

This work presents a methodology for implementing the MC method, in a cloud computing setting, which is
inspired in the MapReduce paradigm (Dean and Ghemawat, 2004). This approach consists in splitting, among
several instances of the cloud environment, the MC calculation, process each one of these tasks in parallel, and
finally merge the results into a single instance to compute the statistics. As an example, the methodology is
applied to a simple problem of stochastic structural dynamics.

This paper is organized as follows. The section 2.presents a parallelization strategy for MC method in the
context of cloud computing. The section 3. describes the case of study in which the proposed methodology is
exemplified. The section 4.presents and discusses the statistics done with the data and the convergence of the
results. Finally, the section 5.presents the conclusions and highlight the main contribution of this work.
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2. PARALLELIZATION OF MONTE CARLO METHOD

We propose a MapReduce (Dean and Ghemawat, 2004) strategy for parallel execution of MC method in the
cloud that is composed by three steps: split, process (Map), and merge (Reduce). This strategy of parallelization
was implemented in a cloud computing setting called McCloud (Nasser, 2012; Nasser et al., 2013), which runs
in Microsoft Windows Azure platform (http://www.windowsazure.com). An general overview of the strategy
can be seen in Figure 1, and a detailed description of each step is made below.

Figure 1. General overview of Monte Carlo parallelization strategy in the cloud.

2.1 Split

First of all, the split step choose the number of cloud virtual machines to be used and turn then on. Then,
it divides a MC simulation with NMC realizations into tasks and put then into a queue. Each one of these tasks
is composed by an ensemble of Nserial realizations to be simulated. Thus, it is necessary to process a number
of tasks equal to Ntasks = NMC/Nserial. These tasks are distributed in a manner (approximately) uniformly
among the virtual machines.

In the simulations above, the realizations of the random parameters are obtained by the use of a pseudoran-
dom numbers generator. This generator construct deterministically, and indexed by the value of a statistical
seed, a sequence of numbers that emulates a set of random numbers. To avoid the possibility of repeated seeds,
and hence, redundancy, it is adopted a strategy of seed distribution among the virtual machines which guaran-
tees that the sequence of random numbers generated in each one these machines is different from the sequences
generated on the other machines.

2.2 Process

The process step uses the available virtual machines to pick a process, asynchronously, task by task in the
queue. The output data generated by each executed task is saved into the hard disk for subsequent post-
processing. So, the total amount of storage space used by a MC simulation is proportional to the number of
realizations. Therefore, this step also requires attention in terms of storage space usage, because the demand
of hard disk space may become unfeasible for a simulation with a large number of realizations.

To reduce the storage space usage in the example of section 4., we chose to calculate the mean and standard
deviation using the strategy of pairwise parallel and incremental updates of the statistical moments described in
Bennett et al. (2009), which uses the Welford-Knuth algorithm. Thus, for each executed task, instead of saving
all the simulation data for subsequently calculation of the statistical moments, we save only the mean and the
centered sum of squares. For the calculation of the histograms, the random variables of interest were identified
before the processing step, and their realizations are saved for being used in the histogram construction, during
the post-processing step.

2.3 Merge

The merge step, starts when a the last task in a virtual machine finishes, and this can occur in any virtual
machine. This step read, from the hard disk, all the information contained in the output data from the
simulations, and combines then through statistics to obtain relevant information about the problem under
analysis. At the end of this stage, the saved data is discarded and only the merged result is stored in order to
reduce future costs of data storage.
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3. AN EXAMPLE IN STOCHASTIC STRUCTURAL DYNAMICS

3.1 Physical System

The system of interest in this study case is the elastic bar fixed at a rigid wall, on the left side, and attached
to a lumped mass and two springs (one linear and one nonlinear), on the right side, such as illustrated in
Figure 2. The stochastic nonlinear dynamics of this system was investigated by Cunha Jr and Sampaio (2012,
2013a,b), where the reader can see more details about the modeling procedure presented below. For simplicity,
from now on, this system will be called the fixed-mass-spring bar or simply the bar.

x

u(x, t)

L

k

kNL

m

Figure 2. Sketch of a bar fixed at one and attached to two springs and a mass on the other extreme.

3.2 Strong Formulation

The physical quantity of interest is the bar is its displacement field u, which depends on the position x and
the time t, and evolves, for all (x, t) ∈ (0, L)× (0, T ), according to the following partial differential equation

ρA
∂2u

∂t2
+ c

∂u

∂t
− ∂

∂x

(
EA

∂u

∂x

)
+

(
ku+ kNLu

3 +m
∂2u

∂t2

)
δ(x− L) = f(x, t), (1)

where ρ is mass density, A is the cross section area, c is the damping coefficient, E is the elastic modulus, k is
the stiffness of the linear spring, kNL is the stiffness of the nonlinear spring, m is the lumped mass, and f is a
distributed external force, which depends on x and t. The symbol δ(x − L) denotes Dirac’s delta distribution
at x = L.

For this problem the boundary conditions are given by

u(0, t) = 0, and EA
∂u

∂x
(L, t) = 0, (2)

while the initial position and the initial velocity are respectively given by

u(x, 0) = u0(x), and
∂u

∂t
(x, 0) = v0(x), (3)

being u0 and v0 known functions of x, defined for 0 ≤ x ≤ L.

3.3 Weak Formulation

Let Ut be the space of (time-dependent) basis functions and W be the space of weight functions, both
assumed to be sets of square integrable functions that satisfy the essential boundary condition given by Eq.(2).
The weak formulation, to the problem defined by Eqs.(1) to (3), says to find a function u ∈ Ut such that, for
all w ∈ W, satisfy

M(ü, w) + C(u̇, w) +K(u,w) = F(w) + FNL(u,w), (4)
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M̃(u(·, 0), w) = M̃(u0, w), and M̃(u̇(·, 0), w) = M̃(v0, w), (5)

where M is the mass operator, C is the damping operator, K is the stiffness operator, F is the external force
operator, FNL is the nonlinear force operator, is the M̃ is the associated mass operator, and the upper dot is
an abbreviation for the time derivative.

3.4 Galerkin Formulation

To approximate the solution of the variational problem given by Eqs.(4) to (5), we employ the Galerkin
method (Hughes, 2000). This results in the following system of ordinary differential equations

[M ] ü(t) + [C] u̇(t) + [K] u(t) = f(t) + fNL

(
u̇(t)

)
, (6)

supplemented by the following pair of initial conditions

u(0) = u0 and u̇(0) = v0, (7)

where u(t) is the vector of unknowns in RN , [M ] is the mass matrix, [C] is the damping matrix, [K] is the
stiffness matrix. Also, f(t), fNL

(
u(t)

)
, u0, and v0 are vectors of RN , which respectively represent the external

force, the nonlinear force, the initial position, and the initial velocity. The initial value problem of Eqs.(6) and
(7) has its solution approximated by Newmark method (Hughes, 2000).

3.5 Stochastic Model

In order to introduce randomness in the bar model, we consider a probabilistic space (Θ,A,P), where Θ is
sample space, A is a σ-field over Θ, and P : A → [0, 1] is a probability measure. In this probabilistic space,
the external force f is assumed to be the random field F : [0, L]× [0, T ]×Θ → R, which is proportional to a
normalized Gaussian white noise. Also, the elastic modulus is assumed to be a random variable E : Θ → R.

The probability distribution of E is characterized by its probability density function (PDF) pE : (0,∞)→ R,
which is gamma distributed. To specify the distribution of E we have used the maximum entropy principle
(Soize, 2013), based only on the known information about this parameter (the mean, the second statistical
moment, and the mean of the parameter logarithm).

Due to the randomness of F and E, the bar displacement becomes a random field U : [0, L]× [0, T ]×Θ → R,
which satisfies a initial/boundary value problem similar to the one defined by Eqs.(1) to (3), changing u by U
only.

4. NUMERICAL EXPERIMENTS

We employ the MC method in the cloud to approximate the solution of the stochastic initial/boundary value
problem defined in the section 3.5. This procedure uses a sampling strategy with the number of realizations
always being equal to a power of four. In this procedure, each realization of the random parameters defines a new
variational problem given by Eqs.(4) to (5). Each one of these variational problems is solved deterministically as
described in section 3.4. Then, these results are combined through the statistics that are shown in what follows.

4.1 Probability Density Function

The estimations for the PDF of the (normalized1) bar right extreme displacement, for a fixed instant of
time, is shown in Figure 3, for different values of the total number of realizations in MC simulations. We can
note that, as the number of samples in MC simulation increases, small differences may be noted on the peaks
of successive estimations of the PDF.

We use a convergence criterion based on a residue of the random variable U(L, T, θ), defined as the absolute
value of the difference between two successive approximations of pU(L,T,·), i.e.,

RU(L,T,·) =
∣∣∣p4nU(L,T,·) − pnU(L,T,·)

∣∣∣ , (8)

1By normalized we want to say a random variable with zero mean and unit standard deviation
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(a) 16 384 realizations
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(b) 65 536 realizations
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(c) 262 144 realizations
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(d) 1 048 576 realizations

Figure 3. This figure illustrates estimations for the PDF of the (normalized) random variable U(L, T, ·), for
several values of MC realizations.

where the superscript n indicates the number of realizations in the MC simulation. In this case, we say that the
MC simulation reached a satisfactory result if this residue is less than a prescribed tolerance ε, i.e., RU(L,T,·) < ε
for all θ ∈ Θ. For instance, ε = 0.05.

The reader can observe the distribution of the residue of U(L, T, θ), for several values of MC realizations,
in the Figure 4. Note that although the residue decrease with the increase of the MC realizations, only one
simulation with 1 048 576 samples was able to fulfill the convergence criterion. Note that, despite the number
of samples used in MC simulation be very high and the problem be relatively simple, the tolerance achieved
was relatively low. It is common to observe in the literature works that analyze problems much more complex,
for instance Spanos and Kontsos (2008), Liang and Mahadevan (2011) and Murugan et al. (2012), among many
others, that use some hundreds or a few thousands of samples. In this context, the use of MC in a cloud
computing setting appears to be a viable solution, able to make the work feasible at a low-cost.
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Figure 4. This figure illustrates the residue of the U(L, T, ·) PDF.
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4.2 Mean and Standard Deviation

The Figure 5 shows the evolution of the bar right extreme displacement mean (blue line) and an envelope
of reliability (grey shadow) around it, obtained by adding and subtracting one standard deviation around the
mean. This figure shows these graphs for different values of the total number of realizations in MC simulations.
We can conclude that the low-order statistics, from the qualitative point of view, do not undergo major changes
when the total number of realizations is higher than 16 384.
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(b) 65 536 realizations
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(c) 262 144 realizations
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(d) 1 048 576 realizations

Figure 5. This figure illustrates the mean value (blue line) and a confidence interval (grey shadow) with one
standard deviation, of the random process U(L, ·, ·), for several values of MC realizations.
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Figure 6. This figure illustrates the evolution of residue of the U(L, ·, ·) mean.
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The Figure 6 illustrates the evolution of several residues2 of U(L, ·, ·) mean, and the Figure 7 illustrates the
evolution of several residues of U(L, ·, ·) standard deviation. We note that, the logarithm of the mean value
residues are almost always less than O(10−6), for the case of statistics with larger samples, and presents an
alternate behavior between big drops and climbs, as can be seen in Figure 6. On the other hand, the logarithm
of the standard deviation residue is greater than O(10−6) in the initial instants. This behavior is not maintained
after 2 ms, when the residue curves keeps their alternate behavior, but almost always below O(10−6), as shown
in Figure 7. These results show that statistics of first and second order may be obtained with great accuracy
using the methodology presented in this work.
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Figure 7. This figure illustrates the evolution of residue of the U(L, ·, ·) standard deviation.

4.3 Costs Analysis

The Table 1 allows us to make a comparison between the computational time spent by each one of MC
simulations in the cloud, and the corresponding speed-up factors compared to a serial3 simulation. Note that,
in all of the experiments the strategy of parallelism in the cloud provided performance gains, and such gains
are greater as the number of realizations.

Table 1. Comparison between the computational time spent by each one of MC simulations in the cloud, and
the corresponding speed-up factors compared to a serial simulation.

NMC tasks VMs split process merge total serial speed-up
(ms) (ms) (ms) (min) (min)

256 1 1 — 111 998 2 250 1,9 1,9 1,0
16 384 64 19 1 391 2 188 705 2 094 36,5 121,6 3,3
65 536 256 19 2 516 4 475 018 29 281 75,1 486,4 6,5

262 144 1 024 19 8 109 7 905 771 90 673 133,3 1 945,6 14,6
1 048 576 4 096 19 33 734 28 804 980 355 342 486,0 7 782,4 16,0

A comparison between the storage space used and the financial cost associated to each simulation can be
seen in the Table 2, in which the column space represents the total (temporarily) storage space, in MB, and the
column cost represents the cost of this experiment in US dollar. We can see that our parallelization strategy
used fairly little storage space, even for a large number of MC realizations. Also, the financial cost, even for
the most complex simulation, is very small, a major advantage when compared to the costs of acquiring and
maintaining a traditional cluster.

2We have defined the residue of U(L, ·, ·) mean/standard deviation similarly to the one defined to the Eq.(8), by changing the
PDF for the mean or standard deviation of U(L, ·, ·) only.

3This time was obtained by extrapolation of the processing time spent to run a single task, which uses Nserial = 256.
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Table 2. Comparison between the storage space used by each one of MC simulations in the cloud, and the
financial cost associated to each simulation.

NMC space cost
(MB) ($)

16 384 12,4 5,39
65 536 49,0 7,67

262 144 195,2 9,95
1 048 576 780,8 23,63

5. FINAL REMARKS

We present a strategy for parallelizing the Monte Carlo method in the context of cloud computing, using the
fundamental idea of the MapReduce paradigm. This strategy is described and illustrated in of simple stochastic
problem of structural dynamics. The results show good accuracy for mean and variance, low storage space
usage, and gains of performance that increase with the number of Monte Carlo realizations. Due to its high
scalability capacity and low-cost, the cloud computing strategy shows to be very attractive for MC simulations
which demands a large number of realizations for convergence.
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