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Abstract. Transport problems in multidimensional geometry arise in a number of different applications and the difficulties
associated with their modeling encourage research and development on this issue. In this work, we investigate such a
problem, defined in a rectangular domain R with an isotropic neutron source inside and surrounded by vacuum boundary
conditions. The main idea is to reduce the complexity of the classical two-dimensional model through nodal schemes along
with the application of the analytical discrete ordinates method (ADO) to solve the derived one-dimensional integrated
problems in Cartesian geometry. The integration is performed on the entire domain and the final solutions obtained are
analytical in terms of the spatial variables. As usual for nodal schemes, the relationship between average fluxes and
unknown fluxes at the contours, is approximated. The technique used leads to reduced order eigenvalue systems, thereby
providing the solutions more efficiently. The numerical results obtained were compared to test cases found in the literature
and they showed to be in good agreement.

Keywords: two-dimensional neutron transport problems, nodal schemes, analytical discrete ordinates method (ADO),
fixed source problems.

1. INTRODUCTION

The physical phenomena of transport of neutral particles is of great interest in many scientific applications, as in nu-
clear reactors (Duderstadt and Hamilton, 1976; Hu et al., 2013; Su’ud, 2008), nuclear medicine and radiological protection
(Wagner and Haghighat, 1998), rarefied gas dynamics (Siewert, 2004; Scherer et al., 2009), among others.

The transport equation represents the balance between the gain and loss of particles in a phase space, mathematically
describing neutron transport in material media (Lewis and Miller, 1984). In its general form, it is an integro-differential
equation that depends on seven variables: three spatial, two angular, energy and time variables. Its solution is very
complex, therefore, many numerical methods have been proposed to solve it (Al-Basheer et al., 2010; Stammes et al.,
1988; Zhang et al., 2011). These numerical methods are, in general, based on the discretization of the phase space
variables and they make use of various direct or iterative schemes for solving the systems of linear and algebraic equations
that arise. In time-independent problems, the energy variable is treated, in general, by a multigroup approximation
(Duderstadt and Hamilton, 1976). The two angular variables, which indicate the directions of motion of the particles
may be discretized using the conventional discrete ordinates method Sn (Lewis and Miller, 1984). The spatial variables,
particularly in multi-dimensional problems, can be treated through nodal methods.

In this work, we give attention to nodal methods (Azmy, 1988; Badruzzaman, 1985; Duo et al., 2009), as these are
commonly used in solving multidimensional problems where, by integrating in each spatial variables, we decompose
the system of PDEs (arising from the discretization of the angular integral) into a systems of ODEs. The use of nodal
schemes reduces the complexity of the model and allows the use of various tools for spatial analysis (Barichello et al.,
2009, 2011; Gomes and Barros, 2012; Hauser, 2002; Williams, 2007; Vilhena and Barichello, 1997). Here, we extend the
idea introduced in previous works (Barichello et al., 2009, 2011), and we develop closed form solutions for the integrated
equations derived from the application of a nodal scheme in a two-dimensional discrete ordinates transport problem.
The approach is based on the idea of the ADO method (Barichello and Siewert, 1999a), which has been intensively and
successfully used for solving, in a concise and accurate way and at low computational cost, a large variety of transport
problems (Barichello and Siewert, 1999b, 2000; Cabrera and Barichello, 2006; Scherer et al., 2009). Therefore, we
extend here, the research that has been done with the ADO method to solve two-dimensional problems (Barichello et al.,
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2009, 2011), aiming to address a variety of additional testing problems in order to obtain a comprehensive analysis of the
performance of the proposed formulation.

In the next section, the two-dimensional discrete ordinates neutron transport equation is used to describe a fixed source
problem in non-multiplicative media. Also, the equation is integrated in the variable y to provide a system of ODEs, so
that the one-dimensional problem becomes independent of the variable y, and the unknown terms that appear in the
contours are approximated. In Section 3 the ADO method is applied to the one-dimensional problem in the variable
x where it was possible to halve the order of the eigenvalue problem. The solutions of the homogeneous problem are
then defined. In Section 3.1, the particular solution is proposed and the final system to establish general solution of the
problem is presented. The numerical results are listed and compared to other results found in the literature in Section 4.
The conclusions of this work and suggestions for future work are in Section 5.

2. FORMULATION OF THE PROBLEM

The transport problem considered here, is defined in a rectangular domain R, such that x ∈ [0, a] e y ∈ [0, b]. In the
smaller region Rs, defined as [0, as]× [0, bs] enclosed in R, there is an isotropic neutron source as can be seen in Fig. 1.

Figure 1. Domain R.

In this context, we start with the discrete ordinates equation for the angular flux, written, for the isotropic case (Lewis
and Miller, 1984), as

µm
∂

∂x
Ψ(x, y,Ωm) + ηm

∂

∂y
Ψ(x, y,Ωm) + σtΨ(x, y,Ωm) = Q(x, y) +

σs
4

M∑
k=1

wkΨ(x, y,Ωk), (1)

for m = 1, . . . ,M with M = N(N + 2)/2, where the wm are the weights associated to the Ωm = (µm, ηm) directions,
according to the level-symmetric quadrature scheme. Also, σt and σs are, respectively, the total and scattering cross
sections and Q(x, y) is the isotropic neutron source term.

We proceed to develop what we call the nodal scheme. For the first step, we choose to obtain the one-dimensional
nodal equation for the x direction and we associate the directions Ωm = (µm, ηm) defined by µm > 0 to indexes
m = 1, . . . ,M/2 and µm < 0 to indexes m = M/2 + 1, . . . ,M then we rewrite the Eq. (1) for m = 1, . . . ,M/2 in the
form

µm
∂

∂x
Ψ(x, y,Ωm) + ηm

∂

∂y
Ψ(x, y,Ωm) + σtΨ(x, y,Ωm) = Q(x, y) +

σs
4

M/2∑
k=1

wk[Ψ(x, y,Ωk) + Ψ(x, y,Ωk+M/2)] (2)

and

−µm
∂

∂x
Ψ(x, y,Ωm+M/2) + ηm

∂

∂y
Ψ(x, y,Ωm+M/2) + σtΨ(x, y,Ωm+M/2) = Q(x, y) +

σs
4

M/2∑
k=1

wk[Ψ(x, y,Ωk) + Ψ(x, y,Ωk+M/2)]. (3)
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Now, we integrate Eqs. (2) and (3), for all y, to obtain the one-dimensional nodal equations for the x variable

µm
d

dx
Ψy(x,Ωm) +

ηm
b

[Ψ(x, b,Ωm)−Ψ(x, 0,Ωm)] + σtΨy(x,Ωm) =

Qy(x) +
σs
4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)] (4)

and

−µm
d

dx
Ψy(x,Ωm+M/2) +

ηm+M/2

b
[Ψ(x, b,Ωm+M/2)−Ψ(x, 0,Ωm+M/2)] +

σtΨy(x,Ωm+M/2) = Qy(x) +
σs
4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)], (5)

for m = 1, . . . ,M/2. Here we have defined the moments of the angular flux as

Ψy(x,Ωm) =
1

b

∫ b

0

Ψ(x, y,Ωm)dy (6)

and the integrated source as

Qy(x) =
1

b

∫ b

0

Q(x, y)dy. (7)

If one considers the vacuum boundary conditions in the problem, then the neutron flux is zero in the incidence direc-
tions in y = b and y = 0, in other words, the term Ψ(x, b,Ωm) and Ψ(x, 0,Ωm) in Eqs. (4) and (5) in the incidence
directions are equals to zero

Ψ(x, b,Ωm) = 0 m = M/4 + 1, . . . ,M/2 and m = 3M/4 + 1, . . . ,M (8)

and

Ψ(x, 0,Ωm) = 0 m = 1, . . . ,M/4 and m = M/2 + 1, . . . , 3M/4. (9)

In regard to the usual unknown terms, fluxes at the boundaries, raised in the derivation of the nodal scheme, as the
flow in emerging directions, we propose an approximation in the form

Ψ(x, 0,Ωm) ≈ k̂1Ψy(x,Ωm) m = M/4 + 1, . . . ,M/2 and m = 3M/4 + 1, . . . ,M (10)

and

Ψ(x, b,Ωm) ≈ k̂2Ψy(x,Ωm) m = 1, . . . ,M/4 and m = M/2 + 1, . . . , 3M/4, (11)

in order to derive auxiliary conditions for solving the system. At this point, we leave the constants k̂1 and k̂2 arbitrary.
We now substitute Eqs. (8) and (9), as well as the approximations defined in Eqs. (10)-(11) into Eqs. (4) and (5), to

obtain, the following set of one-dimensional ordinary differential equations in the x direction

µm
d

dx
Ψy(x,Ωm) + [σt + k2ηm]Ψy(x,Ωm) = Qy(x) +

σs
4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)], (12)

µm+M/4
d

dx
Ψy(x,Ωm+M/4) + [σt − k1ηm+M/4]Ψy(x,Ωm+M/4) =

Qy(x) +
σs
4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)], (13)

−µm
d

dx
Ψy(x,Ωm+M/2) + [σt + k2ηm+M/2]Ψy(x,Ωm+M/2) =

Qy(x) +
σs
4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)], (14)
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and

−µm+M/4
d

dx
Ψy(x,Ωm+3M/4) + [σt − k1ηm+3M/4]Ψy(x,Ωm+3M/4) =

Qy(x) +
σs
4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)], (15)

for m = 1, . . . ,M/4. Here, k1 = k̂1/b and k2 = k̂2/b.
We note that, in the proposed scheme, the terms derived from the unknown fluxes at the boundary are not introduced

as modifications on the source term of the original problem, as may be usual in nodal schemes (Azmy, 1988; Gomes and
Barros, 2012; Mello and Barros, 2002). As a consequence, the problem derived for the x-direction remains uncoupled
from the y-direction.

3. A DISCRETE-ORDINATES SOLUTION

Through the two-dimensional transport equation, we can generate a one-dimensional equations system, allowing the
use of ADO method for its resolution. The homogeneous solution obtained by this method is constructed in terms of the
eigenvalues and eigenfunctions (Barichello and Siewert, 1999a).

We proceed to solve the one-dimensional equations in the variable x as follows. We propose a homogeneous solution
as

Ψy(x,Ωm) = Φ(ν,Ωm)e−x/ν , (16)

and then substitute Eq. (16) into Eqs. (12)-(15) obtaining,

−µm
ν

Φ(ν,Ωm) + [σt + k2ηm]Φ(ν,Ωm) =
σs
4

M/2∑
k=1

wk[Φ(ν,Ωk) + Φ(ν,Ωk+M/2)], (17)

−
µm+M/4

ν
Φ(ν,Ωm+M/4) + [σt − k1ηm+M/4]Φ(ν,Ωm+M/4) =

σs
4

M/2∑
k=1

wk[Φ(ν,Ωk) + Φ(ν,Ωk+M/2)], (18)

µm
ν

Φ(ν,Ωm+M/2) + [σt + k2ηm+M/2]Φ(ν,Ωm+M/2) =
σs
4

M/2∑
k=1

wk[Φ(ν,Ωk) + Φ(ν,Ωk+M/2)], (19)

and

µm+M/4

ν
Φ(ν,Ωm+3M/4) + [σt − k1ηm+3M/4]Φ(ν,Ωm+3M/4) =

σs
4

M/2∑
k=1

wk[Φ(ν,Ωk) + Φ(ν,Ωk+M/2)], (20)

for m = 1, . . . ,M/4.
Adding Eqs. (17) to (19) we obtain

µm
ν

[Φ(ν,Ωm+M/2)− Φ(ν,Ωm)] + [σt + k2ηm](Φ(ν,Ωm) + Φ(ν,Ωm+M/2)) =

σs
2

M/2∑
k=1

wk[Φ(ν,Ωk) + Φ(ν,Ωk+M/2)]. (21)

Noting that (Barichello et al., 2011)

ηm = ηm+M/2, m = 1, . . . ,M/2, (22)

and defining

U(ν,Ωm) = Φ(ν,Ωm) + Φ(ν,Ωm+M/2) (23)

and

V (ν,Ωm) = Φ(ν,Ωm)− Φ(ν,Ωm+M/2) (24)
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we write

V (ν,Ωm) =
ν

µm
[σt + k2ηm]U(ν,Ωm)− σsν

2µm

M/2∑
k=1

wkU(ν,Ωk). (25)

We add Eqs. (18) to (20) to obtain

V (ν,Ωm+M/4) =
ν

µm+M/4
[σt − k1ηm+M/4]U(ν,Ωm+M/4)− σsν

2µm+M/4

M/2∑
k=1

wkU(ν,Ωk). (26)

Now, subtracting Eq. (17) from Eq. (19) and Eq. (18) from Eq. (20),

−µm
ν
U(ν,Ωm) + (σt + k2ηm)V (ν,Ωm) = 0 (27)

and

−
µm+M/4

ν
U(ν,Ωm+M/4) + (σt − k1ηm+M/4)V (ν,Ωm+M/4) = 0. (28)

Finally, substituting Eq. (25) into Eq. (27) and Eq. (26) into Eq. (28), for m = 1, . . . ,M/4, the following eigenvalue
problem arises,

1

µ2
m

[σt + k2ηm]2U(ν,Ωm)− σs
2µ2

m

[σt + k2ηm]

M/2∑
k=1

wkU(ν,Ωk) = λU(ν,Ωm) (29)

and

1

µ2
m+M/4

[σt − k1ηm+M/4]2U(ν,Ωm+M/4)− σs
2µ2

m+M/4

[σt − k1ηm+M/4]

M/2∑
k=1

wkU(ν,Ωk) = λU(ν,Ωm+M/4) (30)

with

λ =
1

ν2
. (31)

We evaluate Eqs. (29) and (30) in the directions associated with m = 1, . . . ,M/4, such that, if we define the vector U
with dimension M/2× 1, which components are U(ν,Ωm), we can write the eigenvalue problem in matrix form as

[D− A]U = λU, (32)

where D and A are matrices M/2×M/2. In fact, we define D as

D = diag

{(
σt + k2η1

µ1

)2

, . . . ,

(
σt + k2ηM/4

µM/4

)2

,

(
σt − k1ηM/4+1

µM/4+1

)2

, . . . ,

(
σt − k1ηM/2

µM/2

)2
}

(33)

and the entries of A are expressed, for j = 1, . . . ,M/2, as

a(i, j) =
wjσs[σt + k2ηi]

2µ2
i

, for i = 1, . . . ,M/4 (34)

(35)

and

a(i, j) =
wjσs[σt − k1ηi]

2µ2
i

, for i = M/4 + 1, . . . ,M/2. (36)

From the solution of the eigenvalue problem, Eq. (32), we obtain {λj ,Uj} for j = 1, . . . ,M/2 such that, we find
the separation constants νj , in Eq. (31). We use Eqs. (27) and (28) to define the function V , thus determining the
eigenfunctions Φ from the expressions

Φ(νj ,Ωm) =
U(ν,Ωm) + V (ν,Ωm)

2
(37)

and

Φ(νj ,Ωm+M/2) =
U(ν,Ωm)− V (ν,Ωm)

2
. (38)
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Since the separation constants occurs in pairs, ±νj , we write the homogeneous solution of Eq. (4) and (5), for m =
1, . . . ,M/2 in the general form

Ψh
y(x,Ωm) =

M/2∑
j=1

AjΦ(νj ,Ωm)e−x/νj +BjΦ(νj ,Ωm+M/2)e−(a−x)/νj (39)

and

Ψh
y(x,Ωm+M/2) =

M/2∑
j=1

AjΦ(νj ,Ωm+M/2)e−x/νj +BjΦ(νj ,Ωm)e−(a−x)/νj , (40)

where the coefficients Aj and Bj are to be determined.

3.1 Particular solution

Since our problem has an inhomogeneous source term, a particular solution has to be defined. We consider the special
definition of the source term for this specific problem

Q(x, y) = 1, x ∈ [0, as], y ∈ [0, bs] (41)

and zero otherwise (Loyalka and Tsai, 1975). We then return to Eq. (7), to obtain

Qy(x) =

{
bs/b, x ∈ [0, as]

0, as < x ≤ a. (42)

In this way, for m = 1, . . . ,M , we seek a particular solution of the form

Ψp
y(x,Ωm) = Cm. (43)

If we substitute Eq. (43) into Eqs. (12) to (15) we find that Cm must satisfy the following M ×M linear system for
x ∈ [0, as] (Barichello et al., 2011),

KmCm −
σs
4

M∑
k=1

wkCk =
bs
b
, (44)

with

Km = σt + k2ηm m = 1, . . . ,M/4 and m = M/2 + 1, . . . , 3M/4, (45)

and

Km = σt − k1ηm m = M/4 + 1, . . . ,M/2 and m = 3M/4 + 1, . . . ,M. (46)

At this point we have the homogeneous and particular solutions for Eqs. (12)-(15) established. We are now able to
determine the general solution in terms of the unknown arbitrary coefficients Aj and Bj . As the source term is defined
for x ∈ [0, as], we write the general solution, for m = 1, . . . ,M/2, in this case as

Ψy(x,Ωm) =

M/2∑
j=1

AjΦ(νj ,Ωm)e−x/νj +BjΦ(νj ,Ωm+M/2)e−(as−x)/νj + Cm, (47)

Ψy(x,Ωm+M/2) =

M/2∑
j=1

AjΦ(νj ,Ωm+M/2)e−x/νj +BjΦ(νj ,Ωm)e−(as−x)/νj + Cm+M/2 (48)

for x ∈ (0, as) and

Ψy(x,Ωm) =

M/2∑
j=1

CjΦ(νj ,Ωm)e−(x−as)/νj +DjΦ(νj ,Ωm+M/2)e−(a−x)/νj , (49)

Ψy(x,Ωm+M/2) =

M/2∑
j=1

CjΦ(νj ,Ωm+M/2)e−(x−as)/νj +DjΦ(νj ,Ωm)e−(a−x)/νj (50)
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for x ∈ (as, a).
To obtain the complete solution we will use boundary and interface conditions to define the arbitrary coefficients

Aj , Bj , Cj and Dj , for j = 1, . . . ,M/2. We first consider the boundary conditions already written in nodal version as

Ψy(0,Ωm) = 0 m = 1, . . . ,M/2 (51)

and

Ψy(a,Ωm) = 0 m = M/2 + 1, . . . ,M. (52)

Thus, if we substitute Eqs. (47)-(50) into the boundary conditions Eqs. (51) and (52), and take into account the
continuity interface conditions, we obtain, for m = 1, . . . ,M/2,

M/2∑
j=1

AjΦ(νj ,Ωm) +BjΦ(νj ,Ωm+M/2)e−as/νj = −Cm, (53)

M/2∑
j=1

Φ(νj ,Ωm)[Cj −Aje−as/νj ] + Φ(νj ,Ωm+M/2)[Dje
−(a−as)/νj −Bj ] = Cm, (54)

M/2∑
j=1

Φ(νj ,Ωm)[Dje
−(a−as)/νj −Bj ] + Φ(νj ,Ωm+M/2)[Cj −Aje−as/νj ] = Cm+M/2 (55)

and

M/2∑
j=1

CjΦ(νj ,Ωm+M/2)e−(a−as)/νj +DjΦ(νj ,Ωm) = 0, (56)

which turns out to be a 2M × 2M linear system. Solving this system we obtain the 2M coefficients of the homogeneous
solution, therefore fully defining the solution. Once these are obtained, we find the general solution of the integrated
problem in the x-direction as

Ψy(x,Ωm) = Ψh
y(x,Ωm) + Ψp

y(x,Ωm), for m = 1, . . . ,M. (57)

We remind the reader that the definition and solution of the problem formulated in the x-direction is decoupled from that
in the y-direction. It follows that the formulation does not depend of in which direction it is made. To obtain a solution of
the problem in terms of the y-variable, we follow similar steps as presented before.

4. NUMERICAL RESULTS AND COMPUTATIONAL ASPECTS

We consider here, a test case described by Loyalka and Tsai (1975), where the rectangular region is defined by
a = b = 1.0, and an unitary source is located in the region [0, 0.52] × [0, 0.52]. In that work, a method is proposed for
solving the integral form of the neutron transport equation. Other parameters used in this case are σt = 1.0cm−1 and
σs = 0.5cm−1, as described there.

We provide numerical results for the scalar flux evaluated as

φ(x) =
1

4

M/2∑
k=1

wk[Ψy(x,Ωk) + Ψy(x,Ωk+M/2)], (58)

to be compared with those available in Loyalka and Tsai (1975), for x = y = 0.5, x = y = 0.7 and x = y = 0.98.
The results listed in Table 1 were generated for N = 2 to N = 16, with different values of k̂1 and k̂2. From the

analysis of the results for the scalar flow shown in Table 1, it was observed that depending on where the scalar flux of
neutrons is measured, different values of k̂1 and k̂2 should be taken, which is physically reasonable. In this work, the
relative errors for the three cases discussed (x = 0.5; x = 0.7 and x = 0.98) not exceed 5% when compared to those
listed in (Lathrop and Brinkley, 1973; Loyalka and Tsai, 1975). Moreover, it is possible to note that the relative errors
between the results obtained by Loyalka (Loyalka and Tsai, 1975) and the code TWOTRAN-II (Lathrop and Brinkley,
1973) comes to 6%.
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Table 1. Scalar flux φ(x, y), for σs = 0.5cm−1.

x = y Loyalka and Tsai (1975) TWOTRAN-II (Loyalka and Tsai 1975) This Work
N = 5,7,9,11,15 N = 4,8,16 N = 2,4,6,8,12,16

k̂1 = 0.7 e k̂2 = 0.35
0.5 0.231990 0.217527 0.188

0.231219 0.215225 0.215
0.230473 0.216245 0.221
0.229927 0.223
0.229296 0.225

0.226
k̂1 = 2.3 e k̂2 = 1.8

0.7 0.075402 0.077642 0.069
0.066100 0.062200 0.068
0.065768 0.063407 0.067
0.065733 0.067
0.064714 0.066

0.066
k̂1 = 4.1 e k̂2 = 2.5

0.98 0.022529 0.023717 0.013
0.022294 0.023662 0.017
0.022165 0.021915 0.019
0.022108 0.020
0.022084 0.021

0.021

The results obtained in this work through the ADO method, keeps in general 1 to 2 digits of agreement asN increases,
and the computational time to generate the results was 1−2 seconds, using the Fortran language. Also, we note that same
results are obtained for the scalar flux solving the problem in the y direction.

5. CONCLUDING REMARKS

We found that the method ADO along with the nodal equations are a good alternative in the approach of two-
dimensional transport problems. The method proved to be efficient in the sense that was not used iterative schemes,
in addition, the derived associated eigenvalue problem is of half-order, when compared with other discrete ordinates
available approaches. Even that in this proposed approach the relation between the integrated flux and the fluxes at the
boundaries is arbitrary, we have obtained results comparable to the literature at low computational cost, and further, this
approach facilitates the determination of particular solutions. For future work, we wish to apply the method to neutron
transport problems in heterogeneous media and we keep investigating appropriate relations between the average flows and
fluxes at the boundary.
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