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Abstract. ASTER, the first deep space Brazilian mission, targets the exploration of the triple asteroid system known as
2001 SN263. The study intended by the ASTER mission requires an attitude controller robust and capable to deal with
the non-linearities and the uncertainties present during the exploration phase, as well as, high amplitude maneuvers. For
such requirements, this paper study the applicability of two controllers designed based on sliding mode techniques. One of
the controllers also includes an adaptation part used to compensate for the spacecraft’s inertia variation. A comparison
is also made with a linear controller developed for the same mission in a previous work, which is tested under similar
conditions. As a result it was possible to see the usefulness of this type of controllers for this type of mission and a superior
performance compared to the linear based controller.
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1. INTRODUCTION

ASTER, the first deep space Brazilian mission, targets the group of asteroids in the system know as 2001 SN263,
which is composed by a central body named Alpha and two satellites, the largest one orbiting further from the system’s
center is named Beta, while the smaller asteroid orbiting closer to Alpha is named Gamma. The objective of this mission
is to explore this system, taking measurements and pictures from all three asteroids and, if possible, finalize the mission
by touching down Alpha, Macau et al. (2011); Sarli et al. (2012b).

One of the many elements for the success of the mission is the ability of correct pointing and stabilization the space-
craft, which is useful for the orientation of instruments and also for the navigation, which is based on a fixed ion-thruster;
therefore, in order to change the trajectory for translation within the system, the attitude of the spacecraft needs to be
changed.

A triple asteroid system is highly non-linear due to the nature of the gravity environment generated by the three bodies,
allied with the solar radiation pressure. Therefore, a control law based on a linear approximation is not suited, neither for
the orbit around the system nor the navigation inside it, because the short maneuver time and the long engine operation.
Furthermore, it is required from the spacecraft to perform large angle maneuvers during its operation within the asteroid
system, such tracking can not be accurately perform by linear controllers as demonstrated on Sarli et al. (2012a), figure 1.

Particularly in this work, only the case where the spacecraft orbits the center of the system will be considered. The
navigation issue is much more complex and it will be addressed in a future work. Moreover, the actuators used here are
small thrusters for the attitude guidance that can provide an anti-symmetrical setting, which means that the attitude can
be controlled without inducing translation.

The control technique chosen for this study is named sliding mode (SM). This formulation is very appealing specially
by its invariance to disturbances and model uncertainties, Utkin (1977); Hung et al. (1993); Slotine and Li (1991). This
characteristic is highly desirable for a mission such as ASTER, where many uncertainties in the model of the asteroid
system are present. The chosen SM formulation has another attractive feature for the mission: an adaptive law that is
of great importance when using ion-thrusters, which stay on consuming propellant for long periods of time making the
inertial matrix vary considerably, Yeh (2010). The focus of this study is to develop the control algorithm, the precise
determination of the moment of inertias’ values was not the objective. Therefore, the values used in the inertia matrix are
hypothetical.

Next sections are divided as follows. Section 2. presents the equations of motion of the spacecraft. Section 3., based
in the work of Yeh (2010), presents the formulation of the non-linear controller for the attitude pointing, discussing the
sliding surface and control law addressing the problem of chattering, followed by the formulation of the SM adaptive
controller, featuring the same important point of the previous controller. The section 4.presents simulation results, which
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Figure 1. Close loop spacecraft response to step inputs of high amplitudes, Sarli et al. (2012a)

are compared with a previous work where the controller was designed using a linear control law, Sarli et al. (2012a).
Finally, section 5. presents this work conclusions.

2. EQUATIONS OF MOTION

Particularly for a circular orbit, or long orbits, the rotational and translational equations of motion of a spacecraft can
be treated independently. For this work the rotational motion will not affect the translational motion, because the gravity
force of Alpha around the spacecraft will be constant around the circular orbit and the gravity of Beta and Gamma will
be treated as perturbations. However, the perturbing torque or disturbance considered here will come from the gravity
gradient torque generated by the three asteroids and their perturbing angular torque, denoted by D, can be calculated as
follows, Sarli et al. (2012a):

{~gc}β =

n∑
j=1

3

(
GMj

R3
j

)
ci,3Jxci,3 → D =

 d1

d2

d3

 =

n∑
j=1

3
GMj

R3
j

 (J33 − J22) c23,jc33,j

(J11 − J33) c33,jc13,j

(J22 − J11) c13,jc23,j

 (1)

where, ci,3 is the third column of the transformation matrix from the inertial frame to the body-fixed frame, Rj is the
distance between the spacecraft’s center of mass and the asteroid’s center of mass, J is the inertia matrix, j represents the
number of the body: Alpha is 1, Beta 2 and Gamma 3, G is the gravitational constant and Mj is the mass of each asteroid.
It is assumed that the values of the secondary terms of the inertia matrix are negligible.

It is important to point out that the evolution of Beta and Gamma around Alpha were studied in Fang et al. (2011).
However, no official model has been derived yet. Therefore, the ephemeris model used in this work was calculated using
the initial conditions from Fang’s work and propagated using an Adams integrator for 20 days from June 1st of 2019 until
June 20th of the same year, Sarli et al. (2012b) . Finally, the solar radiation pressure on the circular orbit is assumed to be
a constant affecting only the point where the center of the orbit is located, not its orbital elements.

The rotational equations of motion for the spacecraft as a rigid body can be derived by Euler’s formulation, having the
following form:

JΩ̇ = −J̇Ω− Ω× (JΩ) + Tb +D (2)

where J is the inertia matrix, Ω is the angular velocity, Tb is the moment due to the actuators and D is the disturbance
torque.

As mentioned before the spacecraft has a large ion-thrust for trajectory control and a cluster of small thrusters for
attitude control. These small thrusters are arranged in such a way that can generate three independent control torques Tx,
Ty and Tz around the x, y and z axes of the body, respectively, without inducing translation; then, Tb = [Tx Ty Tz]

T . In
practice, these control torques can assume only three levels: zero, minimum negative and minimum positive. However,
the control law assumes continuous varying torques. This can be obtained approximately by pulse-width pulse-frequency
(PWPF) modulation, Qingleia et al. (2011).
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It is convenient to evaluate the rotational kinematics in quaternions, rather than in Euler angles, in order to avoid
singularities. The quaternion formulation is described as it follows:

Q =
[
q1 q2 q3 q4

]T
=
[
Q̄T q4

]T
Q̄T =

 q1

q2

q3

 = U sin
(

Φ
2

)
, q4 = cos

(
Φ
2

) (3)

where Q is the quaternion, Q̄ is its vectorial part and q4 is its scalar part. U is the rotation vector and Φ is the rotation
angle, that describe a rigid body rotation, according to the Euler’s rotation theorem.

The derivative of the quaternion is:

˙̄Q = 1
2

〈
Q̄x
〉

Ω + 1
2q4Ω〈

Q̄x
〉

=

 0 −q3 q2

q3 0 −q1

−q2 q1 0


q̇4 = − 1

2ΩT Q̄

(4)

with Eq. 2 and Eq. 4 the final form of the spacecraft’s dynamic model can be obtained, where e means an error and d
means a desired behavior,

Q̇e = 1
2

〈
Q̄ex

〉
Ωe + 1

2qe4Ωe
q̇e4 = − 1

2ΩTe Q̄e
JΩ̇ = −J̇Ω− Ω× (JΩ) + Tb +D

(5)

with,

Ωe = Ω− Ωd (6)

Qe =
[
qe1 qe2 qe3 qe4

]T
=


qd4 qd3 −qd2 −qd1

−qd3 qd4 qd1 −qd2

qd2 −qd1 qd4 −qd3

qd1 qd2 qd3 qd4



q1

q2

q3

q4

 (7)

Equation 6 defines an error angular speed with respect to a desired angular speed Ωd. Equation 7 defines an incremental
rotation with respect to a desired attitudeQd. The desired angular speed and attitude will be considered in the next section,
where the problem of attitude tracking control is developed.

3. NONLINEAR ATTITUDE CONTROLLER

This section presents two controllers developed in the reference Yeh (2010). They are sliding mode controllers devel-
oped for the attitude control of a spacecraft with thrusters, an application similar to that assumed in this paper.

The first approach is a nonlinear robust controller with respect to external disturbances and parametric uncertainties.
The second approach is also a nonlinear robust controller, but with an additional adaptive law to estimate the uncertain
inertia matrix.

The formulation of this section is identical to that in the reference Yeh (2010), no changes are introduced in the control
structure or tunning methods. However, here, attention is paid in the explanation of the meaning of each design parameter
of the controls. By explaining the role of each element in the control law, the designer can understand the impact of such
parameters when tunning a specific control law for some application.

3.1 Sliding mode attitude controller design

In the development of a SM controller, one needs to define a sliding surface. This surface is determined in order to
obtain a sliding mode that satisfy the requirements of some application, in this case, the tracking of a desired attitude.
After the determination of a sliding surface, a reaching condition shall be described, from which the sliding surface can be
reached. This condition determines the control law that can make de sliding mode possible and, consequently, the desired
behavior, Hung et al. (1993); Utkin (1977). The next topics describe each of these steps for the robust control law of Yeh
(2010).

3.1.1 Sliding surface

The switching function is defined as:

S = PQe + Ωe (8)
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where, P is a positive diagonal matrix.
When S = 0, the switching surface is obtained. The path of the system constrained to this surface is the sliding mode.

This sliding mode shall represent the desired behavior, which in this case is the tracking of the desired attitude. So, during
the sliding mode, one should expect that the errors in the quaternion and angular velocity Qe and Ωe tend to zero. The
evaluation of this requirement is performed using the Lyapunov stability theory.

During the sliding mode, Eq. 8 tells that:

PQe + Ωe = 0 (9)

such that the angular velocity and quaternion are constrained by: Ωe = −PQe. Applying this result in the Eq. 5, one
obtains the differential equation of the sliding mode:

Q̇e = − 1
2

〈
Q̄ex

〉
PQe − 1

2qe4PQe
q̇e4 = 1

2 Q̄
T
e PQ̄e

(10)

In order to evaluate the stability of the sliding mode, this Lyapunov function candidate is chosen: Ve
(
Qe
)

= kQ
T

e Qe
where k is a positive number. Its derivative generates:

V̇e
(
Qe
)

= 2kQ
T

e Q̇e
V̇e
(
Qe
)

= −kQTe
(〈
Q̄ex

〉
PQe + qe4PQe

)
V̇e
(
Qe
)

= −kqe4Q
T

e PQe

(11)

because Q
T

e

〈
Q̄ex

〉
= 0.

The sign of the last derivative depends on qe4, the real part of the quaternion. From the definition in Eq. 3, qe4 can be
always positive or always negative. This arbitrariness depends only in the choice of initial condition: if it is positive, qe4
will be also positive, this is the fact assumed here, Yeh (2010).

From the Eq. 10, note that q̇e4 is always positive. As its initial condition is also positive, qe4(t) is always positive
and growing: qe4(t) ≥ c, ∀t, for some initial value c > 0. Moreover, from the fact of unit-norm of the quaternions, the
following relation holds:

q2
1 + q2

2 + q2
3 + q2

4 = 1 ⇒ qe4 ≤ 1 (12)

Hence,

c ≤ qe4 ≤ 1, ⇒ −ckQTe PQe ≥ V̇e
(
Qe
)
≥ −kQTe PQe (13)

From the Lyapunov stability theory, the sliding mode is stable, in such a way that the origin of the error dynamics is a
stable equilibrium point. Thus, the tracking error converges to zero during the sliding mode:(

Qe, Ωe
)
→ (03×1, 03×1) , t→ 0 (14)

This shows that the sliding surface is capable of satisfy the requirement of attitude tracking. In this sense, note the
meaning of the positive definite matrix P : from Eq. 13 the decaying rate of the Lyapunov function depends on the
magnitude of P , so, increasing the magnitude of the elements of this matrix, one can decrease the convergence time to the
origin of the error dynamics.

3.1.2 Control law

This section establishes a control law in order to guarantee that the sliding surface is reached, from any initial condition,
and the sliding mode exists. That is, the control shall be determined in order to satisfy a reaching condition, Hung et al.
(1993). The reaching condition can be specified in a variety of ways, Yeh (2010) chose the usage of the Lyapunov function
method. The function candidate is:

Vs = 1
2S

TJS

Vs = STJṠ + 1
2S

T J̇S
(15)

Substituting Eq. 5 and Eq. 8 on Eq. 15:

V̇s = ST
[
−J̇Ω− Ω× (JΩ) + Tb +D − JΩ̇d + JP

(
1

2

〈
Q̄ex

〉
Ωe +

1

2
qe4Ωe

)
+

1

2
J̇S

]
(16)

From the above result, the following control torque is assumed:

Tb = −KsS + J̇0Ω− 1

2
J̇0S − J0P

(
1

2

〈
Q̄ex

〉
Ωe +

1

2
qe4Ωe

)
+ Ω× (J0Ω)− J0Ω̇d + Λs (17)
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The element KsS is a feedback of the switching function, Ks = diag
[
ks1 ks2 ks3

]
is a 3 × 3 positive defi-

nite matrix, the meaning of Ks will be explained in the following. The element Λs is a discontinuous control action,
responsible for the generation of the sliding mode:

Λs =
[
λs1 λs2 λs3

]T
, λsi = −csi

(
Q,Ω, Qd, Q̇d, Q̈d

)
sgn(si) (18)

the terms csi
(
Q,Ω, Qd, Q̇d, Q̈d

)
are control amplitudes, their meaning will be explained in the following. The element

sgn(si) is the sign function:

sgn(si) =

 1, si > 0,
0, si = 0,
−1, si < 0,

i = 1, 2, 3 (19)

and S =
[
s1 s2 s3

]T
is the sliding surface.

The remaining elements in the control torque of Eq. 17 is the equivalent control, it is responsible for guarantee that
the sliding mode trajectories are tangent to the sliding surface, Hung et al. (1993). Note that it is a continuous nonlinear
function that depends on the dynamics of the plant.

Substituting the control torque of Eq. 17 in the derivative of Eq. 16, one obtains a condition for the control action to
satisfy the reaching condition (negative definite function). This condition is related with the uncertain terms given by the
use of a nominal inertia matrix J0 and derivative J̇0, and disturbanceD. This condition guaranties the exponential stability
and robustness of the controller for attitude tracking. It is achieved if the following inequality condition is satisfied:

csi

(
Q,Ω, Qd, Q̇d, Q̈d

)
> δmaxi

(
Q,Ω, Qd, Q̇d, Q̈d

)
≥ |δi| (20)

where, δ̄ =
[
δ1 δ2 δ3

]T
= −∆J̇Ω−Ω× (∆JΩ) +D−∆JΩ̇d + ∆JP

(
1
2

〈
Q̄ex

〉
Ωe + 1

2qe4Ωe
)

+ 1
2∆J̇S. These

functions depend on the uncertainties ∆J = J − J0 and ∆J̇ = J̇ − J̇0 and the disturbance D. Such quantities are not
known, by this way, the maximum amount of uncertainty shall be considered in the Eq. 20.

The proof of condition 20 comes using Eq. 16 with 17 for S 6= 0,

V̇s = −STKsS −
∑3
i=1 |si| [csi − δisgn(si)] ≤ −STKsS −

∑3
i=1 |si| [csi − δmaxi ] ≤ −σmin (Ks) |S|2 < 0 (21)

where, σmin is the smallest eigenvalue of Ks.
In this way, guaranteeing the sliding and reaching conditions of the sliding mode S = 0. Therefore, by making use of

Eq. 8, the switching function equation, and Eq. 17, the control law, one ensures the exponential stability and robustness
of the sliding-mode attitude controller.

Special attention shall be paid for the meaning of the control gains Ks = diag
[
ks1 ks2 ks3

]
and the control

amplitudes csi
(
Q,Ω, Qd, Q̇d, Q̈d

)
. From Eq. 21, the amplitude of the gains ksi are related to the rate of convergence of

the reaching mode, in other words, increasing the magnitude of these gains, the time of convergence to the sliding surface
is decreased. In other way, from Eq. 20, the control amplitudes csi

(
Q,Ω, Qd, Q̇d, Q̈d

)
shall be determined in order to

guarantee that the reaching condition is satisfied in the presence of the external disturbance and parametric uncertainties.
There are a variety of ways for satisfy this, one possibility is consider the worst case scenario, where the modulus of Eq.
20 is taken, with a subsequent substitution of the maximal expected value of each variable, da Silva et al. (2008).

3.1.3 Chattering

The chattering problem is originated due to the existence of physical limitations in the implementation of the sign
function sgn(si), some problems are delays, dead zones, hysteresis. In order to improve the solution and avoid the
problem caused by chattering, the sign function can be replaced by a saturation function; in this way, forcing the system
to stay within the limits of the boundary layer |Si| < ε (ε represents a positive small scalar value) and no longer exactly
on the sliding surface. Such change in the control law will be, of course, followed by a reduction in the accuracy of the
desired performance, Slotine and Li (1991). The saturation function is defined as follows:

Sat(si, ε) =

 1, si > ε
si
ε |si| < ε
−1, si < ε

(22)

where ε is a constant that shall be chosen as small as possible.
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3.2 Sliding mode adaptive attitude controller design

The variation of the inertia of the spacecraft cannot be neglected if a particular long phase consumes fuel during this
entire phase.

As it is too complex to calculate the inertia variation, a very useful solution is to design an adaptive controller that can
compensate for the effect of this variation and of the disturbances.

In short, the adaptive controller problem consists in generating a control law and a parameter vector estimation law,
such that the tracking error tends exponentially to zero:

1. Given the desired attitude, quaternion Qd, and angular velocity, Ωd, with some of all the parameters unknown of J ;

2. Derive a control law for the thrusters torques and an estimation law for the unknown parameters, such that Q and Ω
precisely track Qd and Ωd after the initial adaptation process;

Let A be a constant 6 × 1 vector containing the unknown parameters and Â (the time-varying parameter vector
estimate); with the error Ã = Â−A.

The sliding mode surface defined in Eq. 8 remains the same. However, a new Lyapunov function candidate is assumed
for the reaching condition:

V =
1

2
STJS +

1

2
ÃTΓ−1Ã (23)

where, Γ is a positive diagonal matrix, the meaning of which will be discussed further.
The derivative of the function candidate is:

V̇ = STJṠ + ÃTΓ−1 ˙̃A (24)

Substituting Eq. 5 and the time derivative of Eq. 8 in Eq. 24 one gets:

V̇ = ST
[
−Ω× (JΩ) + J

(
1

2
P
〈
Q̄ex

〉
Ωe +

1

2
Pqe4Ωe − Ω̇d

)]
+ ST (Tb +D) + ÃTΓ−1 ˙̃A (25)

note that the time derivative of J is assumed zero. In such a case, this time derivative is taken as a disturbance inside the
vector D. Moreover, see that this implies: ˙̃A =

˙̂
A− Ȧ =

˙̂
A− 0 =

˙̂
A, as long as the vector A contains the elements of the

matrix J . As a consequence, in Eq. 25 ˙̃A can be changed by ˙̂
A.

From the Eq. 25, the control torque is chosen as:

Tb = Ω×
(
ĴΩ
)
− Ĵ

(
1

2
P
〈
Q̄ex

〉
Ωe +

1

2
Pqe4Ωe − Ω̇d

)
+ Λ−KaS (26)

where, Ka = diag
[
ka1 ka2 ka3

]
is a 3 × 3 positive definite matrix and Λ =

[
λ1 λ2 λ3

]T
is a vector of

discontinuous functions. These terms are analogous to that in Eq. 17, but note that the nominal matrix J was changed by
the estimated matrix Ĵ .

Then, Eq. 25 can be written as:

V̇ = ST [Ω×
(
ĴΩ
)
− Ĵ

(
1
2P
〈
Q̄ex

〉
Ωe + 1

2Pqe4Ωe − Ω̇d

)
+

−Ω× (JΩ) + J
(

1
2P
〈
Q̄ex

〉
Ωe + 1

2Pqe4Ωe − Ω̇d

)
]− STKaS + ST (Λ +D) + ÃTΓ−1 ˙̂

A
(27)

By some algebraic manipulation one has:

Ω×
(
ĴΩ
)
− Ĵ

(
1

2
P
〈
Q̄ex

〉
Ωe +

1

2
Pqe4Ωe − Ω̇d

)
= Y

(
Q,Ω, Qd, Q̇d, Q̈d

)
Â (28)

where Y
(
Q,Ω, Qd, Q̇d, Q̈d

)
is a 3× 6 matrix.

So, Eq. 27 becomes:

V̇ = STY Ã− STKaS + Σ3
i=1si (λi + di) + ÃTΓ−1 ˙̂

A (29)

note that the subtle but important relation was taken: Ã = Â−A.
With λi = −kisgn(si) (ki are amplitudes to be determined), the above equation becomes:

V̇ = STY Ã− STKaS + Σ3
i=1 |si| (−ki + disgn(si)) + ÃTΓ−1 ˙̂

A (30)
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Note that in the last equation one can write: STY Ã+ ÃTΓ−1 ˙̂
A = ÃTY TS + ÃTΓ−1 ˙̂

A = ÃT
(
Y TS + Γ−1 ˙̂

A
)

. So,
the following adaptive law can be chosen:

Y TS + Γ−1 ˙̂
A = 0, ⇒ ˙̂

A = −ΓY TS (31)

from this assumption, Eq. 30 becomes:

V̇ = −STKaS + Σ3
i=1 |si| (−ki + disgn(si)) (32)

Choosing the following control amplitudes for disturbance rejection:

ki > dmaxi ≥ |di| (i = 1, 2, 3) (33)

then Eq. 32 becomes:

V̇ ≤ −STKaS (34)

This guarantees the global stability of the attitude tracking system provided by the sliding mode adaptive controller. In
Yeh (2010), it is shown that this controller also provide the convergence of the states Q̄e and Ωe and parameter estimation
error Ã. The demonstration involves the Lyapunov stability theory and the Barbalat’s lemma. This proves that the adaptive
controller can also solve the attitude tracking problem.

Again, special attention shall be paid for the meaning of the control gains Ka = diag
[
ka1 ka2 ka3

]
, the control

amplitudes ki and the elements Γ = diag [γ1 γ2 . . . γ6]. From Eq. 34, the amplitude of the gains kai are related to the rate
of convergence of the reaching mode, in other words, by increasing the magnitude of these gains, the time of convergence
to the sliding surface is decreased. In other way, from Eq. 33, the control amplitudes ki shall be determined in order to
guarantee that the reaching condition is satisfied in the presence of the disturbance D, which is related to the external
perturbations and the uncertainties in the inertia matrix. Finally, from Eq. 31, one shall note that the elements of Γ are
related with the convergence rate of the parameter estimation law.

3.2.1 Chattering suppression

In the same way of the non adaptive controller, the sign function shall be changed by a saturation function in order to
avoid chattering.

4. Simulations

Two simulations were performed with the two controllers described at section 3. As the ASTER is still being prepared
and final values for most of the variables used here are yet to be evaluated and are constantly changing; the values for the
variables used in this work were based on the references Sarli et al. (2012b); Yeh (2010); Sarli et al. (2012a). The orbital
conditions were chosen in a way to put the spacecraft under the most severe conditions with respect to the perturbations;
the initial orbit is a circular, on Alpha’s ecliptic plane between Beta and Gamma, with a radius of 11.9 km. The simulation
time is set as approximately 12.5 second. In order to obtain a more demanding condition in which the control has to
quickly perform the correction maneuvers, the disturbance were evaluated in a different time frame; while the simulation
time is counted in seconds the disturbance time is counted in days, that means that the disturbances and, by extension,
the orbits of the planets and the orbit of the spacecraft are evaluated at 12.5 days, figure 2. Therefore, all the disturbance
faced in two full orbits (approximately 12.5 days) are compressed in an interval of 12.5 seconds in which the spacecraft
has to correctly steer its attitude and maintain stability. This rather unusual condition is done so not only to make more
challenging but also to place the attitude and the orbit conditions in the same frequency, if not, the time necessary to
perform an attitude maneuver would be much faster than the translation of the system; it would appear that the asteroids
and the spacecraft didn’t even move during the time of the attitude maneuver.

For both simulations the initial attitude conditions are the same as the ones used in the previous work related with
ASTER’s linear attitude control Sarli et al. (2012a), were the initial attitude is represented by the Euler angles with
values of [ 1◦ −2◦ 4◦ ]T , which converted to quaternions are Q(0) = [ 0.0081 −0.0171 0.0350 0.9992 ]T ,
the angular velocity is Ω(0) = [ −2◦/s −3◦/s 5◦/s ]T and the desired conditions are the high amplitude conditions
for the Euler angles [ 45◦ 45◦ 45◦ ]T , which in quaternions is Qd(t) = [ 0.4119 0.4119 0.1913 0.7325 ]T ,
Ωd(t) = [ 0 0 0 ]T and Ω̇d(t) = [ 0 0 0 ]T .

The inertia conditions of the spacecraft will be

J0 =

 19.4 0.1 3
0.1 25.7 0.5
3 0.5 18.4

 , J̇0 =
−J0

1000
, ∆J =

J0

10
, ∆J̇ =

J̇0

10
(35)
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Figure 2. Spacecraft trajectory

For the non-adaptive controller the data for the sliding surface are cs1 = cs2 = cs3 = 0.2 and

P =

 12 0 0
0 12 0
0 0 12

 , Ks =

 14 0 0
0 14 0
0 0 14

 (36)

Finally, for the adaptive controller: k1 = k2 = k3 = 0.2,

P =

 50 0 0
0 50 0
0 0 50

 , Γ =

 0.1 0 0
0 0.1 0
0 0 0.1

 , Ka =

 5 0 0
0 5 0
0 0 5

 (37)

The above values for both controllers were adjusted by trial and error methods aiming a compromise between the
sliding mode and switching surface’s convergence speeds represented by P and K respectively, the value of cs’s and k’s
were based on the expected uncertainty in the inertia matrix which has its largest value of 2.57 and, finally, it was chosen
and exponential convergence for the saturation function used in the controller.

The results of both simulations for the full non-linear system can be seen in the next figures, where 3, 4 and 5 show
respectively the Euler angles, quaternions and angular velocity evolution, 6 shows the control used in each direction, 7
shows the disturbance over the spacecraft, 8 presents the variation of the inertia matrix and 9 shows the estimation error
in the adaptive controller; on all figures blue represents the non-adaptive and red the adaptive controller.

From the figures it is possible to see that both controllers perform well even in face of a very demanding perturbations
and commands, with both controllers converging in less than 8 seconds. A slightly faster convergence rate can be seen
for the non-adaptive controller; however, this can be considered negligible when compared with the total translation time,
12.5 days. The adaptive controller is more demanding in the controls. The error the inertia matrix is quickly corrected
and it converges to zero in less than 4 seconds.
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Figure 4. Attitude quaternion evolution
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Figure 5. Attitude angular velocity evolution
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Figure 6. Thrusters torque profile
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Figure 7. Orbit gravitational perturbation on the spacecraft
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Figure 8. Inertia matrix variation
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Figure 9. Inertia estimation error
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5. CONCLUSIONS

During this work an attitude controller for the ASTER mission was design based on sliding mode techniques, the
need of a non-linear invariant controller comes from the nature of the problem, a spiral escape and heliocentric transfer
with posterior navigation on a complex gravitational asteroid system, and uncertainties found in the assessment of the
environment. The adaptability necessity comes from the lack of accurate inertia measurement during the course of the
mission, since it makes use of a low-thrust propulsion system which continuously consumes fuel changing the spacecraft’s
inertia matrix.

The results show that this type of controller is, in fact, suitable for the mission’s requirements both with non-adaptive
and adaptive concepts. Nevertheless, the adaptive simulations presents a few advantages as it is more realistic because,
as already explained, the inertia matrix cannot be considered constant over the whole trajectory. Compared to a linear
controller for the same conditions the non-linear controllers developed in this work can operate in much more severe
conditions and do not have convergence problems with high amplitude maneuvers, different from what was observed with
the linear controller that at high amplitude maneuvers was degraded.

The robustness, adaptability, capacity to perform under demanding environment and at high amplitude maneuvers
point out the importance of the use of a non-linear controller and particularly the sliding mode controller for this type of
missions.
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