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Abstract. In the present work, the numerical simulation was adopted to resolve the problem of the turbulent forced 
convection coupled to heat conduction in a duct of the square cross-section. The governing equations for turbulent con-
vection are the continuity, momentum, and energy equations (Reynolds Averaged Navier Stokes, RANS). These equa-
tions are coupled to heat conduction comings through of four plates situated around of the channel flow, the plates are 
coupled between itself with thermal resistance of ideal contact. Assumptions main in the flow, such as: condition of fully 
developed turbulent and incompressible flow had been assumed. The comparison way, had been used two turbulent 
models to resolve the equations of the momentum and one model to resolve the energy equation. That is, to determine 
the profiles of velocity, the models of turbulence, k-ε non linear (NLEVM) and Reynolds Stress Model (RSM), this last 
model simulated in a commercial code, they had been adopted and studied. The fluid temperature field will be deter-
mined from of the model Simple Eddy Diffusivity (SED), based in the hypothesis of the Constant turbulent Prandtl num-
ber; for the equation of the energy of the fluid had been dimensionless and developed in a code of programming 
FORTRAN. The models had been validated in base the experimental and numerical results of literature. Finally the 
results of this investigation allow evaluating the fluid temperature field for different square cross-sectional sections 
throughout of the direction of the main flow, which is influenced mainly by the temperature distribution in the wall.  
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1. INTRODUCTION 

 
Square ducts are widely used in heat transfer devices. For example, in compact heat exchangers, gas turbine cooling 

systems (secondary flows), cooling channels in combustion chambers, nuclear reactors. The forced turbulent heat 
convection in a square duct is one of the fundamental problems in the thermal science and fluid mechanics. Recently, 
Qin and Plecther (2006) showed that the Prandtl’s secondary flow of the second kind has a significant effect on the 
transport of heat and momentum as revealed by the recent large eddy simulation (LES).  Several experimental and 
numerical studies have been conducted on turbulent flow though a non-circular duct, namely, (Nikuradse (1926); 
Gessner and Emery (1976); Gessner and Po (1976); Melling and Whitelaw (1976); Nakayama et al. (1983); Myon and 
Kobayashi (1991); Assato (2001) and others). Similarly important works in the turbulent heat convection were 
developed (Launder and Ying (1973); Emery et al. (1980); Hirota et al. (1997); Rokni (2000); Y. Hongxing (2009)) 
and others). The experimental work of Melling and Whitelaw (1973) shows detailed characteristics of turbulent flow in 
a rectangular duct where they used a laser-Doppler anemometer to report the axial development of the mean velocity, 
secondary mean velocity, etc.  Nakayama et al. (1983), it shows the analysis the fully developed flow field in ducts of 
rectangular and trapezoidal cross-sections using a finite-difference method with the model of Launder and Ying (1973). 
On the other hand, Hirota et al. (1997) present an experimental work on the turbulent heat transfer in a square duct, 
shows detailed characteristics of turbulent flow and temperature field. Likewise, Rokni (1998), in the doctoral thesis 
achievement a comparison of four different turbulence models for predicting the turbulent Reynolds Stresses and three 
turbulent heat fluxes models for ducts square. In the turbulence model it is well known that Linear Eddy Viscosity 
Models (LEVM) can give rise to inaccurate predictions for the Reynolds normal stresses and so that not have the ability 
to predict secondary flows of the second kind. In spite of that, they are one of the most popular models in the 
engineering due to its simplicity, good numerical stability and it can be applied to a wide variety of flows. Thus, 
NLEVM represents a progress of the classical LEVM which permits inequality of the Reynolds normal stresses, a 
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necessary condition for calculating turbulence-driven secondary flow in non-circular ducts within the relative cost of a 
two-equation formulation. The model RSM, also called the second order or second moment closure model is very 
accurate in the calculation of mean flow properties and all Reynolds stresses for many simple and more complex flows 
including wall jets, asymmetric channel and non-circular duct flows and curved flows, also present, disadvantages, just 
as, very large computing costs. The SED models for calculated turbulent heat flux have been adopted and studied. The 
bibliographical revision shows that the majority of the cited works had been previously developed for constant 
temperatures in the contour. However, in many applications the heat flux and surface temperature are non-uniform 
around the duct, becoming important the knowledge of the variation of the conductance around of the duct, Kays and 
Crawford (1980). According to developments performed by Garcia (1996), it is possible to carry out analysis with non-
uniform wall temperature boundary conditions. In this case, it is necessary to define a value that represents the mean 
wall temperatures in a given cross section, “TWm”, in such away, in the present work intended to give a small 
contribution with respect to the influence the non-uniform wall temperature on the fluid temperature field considering 
internal flow with fluids air.  
 
2. NOMENCLATURE 

 
cp specific heat at constant pressure 
D duct height 
Dh hydraulic diameter,  DLDLPAD eh  ..2.4  
dP/dz pressure gradient at z direction (longitudinal axis) 
f, Cf factor of Moody´s friction, and Fanning´s friction coefficient, respectively. 
kf fluid thermal conductivity 
L duct width 
Nu Nusselt number 
Pe perimeter 
Pk turbulence production term 
Re Reynolds number 
T temperature 
Tb internal flow bulk temperature 
TWm wall mean temperature 
T1, T2, T3 and T4 temperature distributions at duct wall (bottom, right side, top and left side) 
Ub internal flow bulk velocity 
U, V and W  average velocity in the Cartesian plane in the direction x, y and z; respectively 
y+    dimensionless wall distance 
 
Greek Symbols 
 
α thermal diffusivity, α = kf / (ρ. cp) 
  distance normal to the wall 
  dimensionless temperature distribution 
μ dynamic viscosity 
μt turbulent viscosity 
 density 

t  turbulent  Prandtl  number 
 

3. Mathematical Formulation 

3.1. Governing Equations 

The Reynolds Averaged Navier Stokes (RANS) equation system is composed of: continuity equation (1), momentum 
equation (2), energy equation (3) and (4) heat conduction equation. 
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For analyses of fully developed turbulent flow and heat transfer, the following hypothesis has been adopted: steady 

state, condition of non-slip on the wall and fluid with constant properties. The turbulent Reynolds stress )( ''
jiuu  and 

the turbulent heat flux )( '' tu j  were modeled and solved by algebraic and/or differential expressions. 
 

3.2. Turbulence Models for Reynolds Stresses 

3.2.1. Nonlinear Eddy Viscosity Model (NLEVM) 

 

The NLEVM Model to reproduce the tensions of Reynolds, it is necessary to include non-linear terms in the basic 
constitutive equations. This is done by attempting to capture the sensitivity of the curvatures of the stream lines. This 
model is based on the initial proposal of Speziale (1987). The Reynolds average equations, Equations (1) to (3), are 
applied for the device presents in the Figure 1(a) and (b). 
 

 
(a) 

 
(b) 

Figure 1: (a) Fully developed turbulent flows in rectangular ducts, (b) Rectangular duct: reference system and 
transversal section. 

 
The velocity components U and V represent the secondary flow, and the axial velocity component W, the velocity of the 
main flow. The transport equations in tensorial form for the turbulent kinetic energy, κ, and the rate of dissipation , 
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respectively, they are given by:   
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The symbols kP  and t , represent the rate of the turbulent kinetic energy production and the turbulent viscosity, 
respectively, and thus, we have:   
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In the present work for NLEVM, the formulations of Low Reynolds Number will be assumed for wall treatment. The 
damping functions 2f and f  is observed in the Equations (6) and (7) and shown in the Table 1.  These functions and 

the constant 1C  and 2C have been used together with the equations κ-ε, the subscribed letter P refers to the nodal point 

near to the wall. Thus PU  and Pk  are the values of the velocity and kinetic energy in this point, respectively.  The 

constant c , 1c , 2c , k  and  they adopt the values of 0.09; 1.5; 1.9; 1.4 e 1.3; respectively. The new constitutive 
relation for the tensions of Reynolds in the model NLEVM, assumed in the thesis of Assato, 2001, is given by: 
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This expression shows that the second term of the right side of the Equation (8), represents the nonlinear term added the 
original constitutive relation. This quadratic term represents the degree of anisotropy between the normal tensions of 
Reynolds, which makes it possible to predict the presence of the secondary flow in non circular ducts. The values of 

NLc1  proposed by Speziale (1987) are equal to 1.68.  Here, NLc1  will be analyzed and will adopt values for the formula-
tion of Low Reynolds Numbers. The tensions of Reynolds, normal and shear, are presented in the Equations (9), (10) 
and (10), are expressed as:  
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The following differences for the normal tensions of Reynolds are presented and have been observed for this type of 
flow. 

 

 








































22

1 x
W

y
Wkc tNLxxyy


                (11) 

 
In such a way in Equation (7), including the derivatives above the tensions of Reynolds, the turbulence production term, 
is expressed as:   
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3.2.2. Reynolds Stress Model (RSM) 

 
The most complex turbulence is the Reynolds Stress Model (RSM), also called of second order, it involves calculations 

of the tensions of Reynolds in an individual form, ''
jiuu , used for this differential equations of transport. The indi-

vidual Reynolds tensions are utilized to close the average Reynolds equations of the momentum.  This model has shown 
superiority regarding the models of two equations in complex flows that involve swirl, rotation, etc.  The exact equa-

tions of transport for the Reynolds tensions, ''
jiuu , can be written as follows: 
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Where the respective letters represent: (a) local derivative of the time;(b) ijC convection;(c) ijTD , Turbulent 

diffusion;(d) ijLD ,  molecular diffusion;(e) ijP  production Term of tensions;(f) ijG  buoyancy production 

Term;(g) ij  Term of pressure-tension (redistribution);(h) ij  Term of dissipation; (i) ijF  Term production for the 

rotation system;(j) jS  Source term; The terms of the exact equations, presented previously, ijC , ijLD , , ijP and ijF  

do not require modeling. However, the terms ijTD , , ijG , ij  and ij  need to be modeled to close the equations. For the 
present analysis, the model LRR (Launder, Reece e Rodi, 1975) is chosen, which assumes that the correlation velocity 
pressure is a linear function of the anisotropy tensor LRR in the phenomenology of the redistribution, ij .  For the 
treatment of the wall, it is also assumed the Low Reynolds numbers and the periodic conditions, Rokni (1996). This 
model had been simulated in the commercial code Fluent 6.3. 
 
3.3 Turbulence Models for Turbulent Heat Flux 

 

3.3.1. Simple Eddy Diffusivity (SED) 

 

This method is based on the Boussinesq viscosity model. The turbulent diffusivity for the energy equation can be ex-

pressed as: 
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  , where the turbulent Prandtl number t  needs to be given. The SED Model assumes that 

the turbulent Prandtl number is constant in the entire region, for the air t  it assumes values of 0.89, independent on 
the wall proximity effect. 
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3.3.2. Generalized Gradient Diffusion Hypothesis (GGDH) 

 
Daly and Harlow (1970) present the following formulation to the turbulent heat flux: 
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The constant tC , assuming the value of 0.3, is adopted. The main advantage of this model is that it considers the 
anisotropic behavior of the fluid heat transport in ducts.  
 

3.3.3. Dimensionless Energy Equation for SED and GGDH Models 

For a given cross section of area “A”, it is possible to define a mean velocity “Ub” and a bulk temperature “Tb”, express 
as: 
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Kays and Crawford (1980) developed an applicable formulation to rectangular cross section ducts. They considered the 
boundary conditions with prescribed uniform wall temperatures at the cross section, and along the duct length. 
According to developments performed by Garcia (1996), it is possible to carry out analysis with non-uniform wall 
temperature boundary conditions. In this case, it is necessary to define a value that represents the mean wall 
temperatures in a given cross section, “TWm”, given as: 
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 It is possible to develop a formula similar to Kays and Crawford (1980), the new expression for the turbulent energy 
equation, is presented as: 
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The following considerations are applied to obtain the variables in dimensionless form: 
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Replacing Equation (14), Equation (15), Equation (20) up to (22) in Equation (19), dimensionless energy equation for 
SED and GGDH becomes, respectively:  
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The fluid temperature field “Tf” can be replaced by “Tb” and the Equation (22) can be expressed as: 
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From Equation (21), the Equation (26) is obtained, and applying this in Equation (17), one gets Equation (28): 
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Replacing Equation (27) in Equation (24), and using also Equations (19) and (20), the dimensionless bulk temperature 
is obtained: 
 

  dYdXW
UA

D

b

h
b ....

.

2

                                                                 (29) 

 
It is possible to compute the heat transfer rate per unit length on the wall surface, “ q’ ”, Equation (30). It depends on 
values for “TWm”, “Tb”, and on the average heat convection coefficient, “ h ”. From fluid enthalpy derivative gradient 
[dhb = cp.dTb], the heat transfer rate per unit length in the fluid, “ q’f  ”, can be expressed by Equation (31). 
 

 ).(.,
bWme TThPq  , and  

dz
dT

cAUq b
pbf ....                                                              (30) and (31)  

 
When Equation (30) is made equal to (31), integrating two cross sections (inlet, namely z1, and outlet, namely z2), it is 
possible to develop the resulting expression, Equation (32). 
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From Equation (32), the bulk temperature longitudinal (z-axis) variation “Tb” is obtained. It is done by “cutting” the 
duct into a lot of segments and applying the numerical method to find “Tb” at each finite cross section. For a given 
bulk temperature at the duct inlet section (Tb1), after solving the equation system, duct outlet bulk temperature (Tb2) is 
computed from that expression, Equation (32). The Dimensionless boundary conditions are given by the following 
equations: 
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When considering uniform wall temperature, Equation (33) and Equation (34) are equal to zero, and for these particular 
conditions, it is possible to notice that these boundary conditions are not functions of “ dzdTb ”. That simplification 
becomes equal to the one studied by Patankar (1991). Equations (25),(26) and (27) , as well as the boundary conditions 
from Equations (33) and (34), form a set of differential equations, in which “” and “dTb/dz” parameters are unknown. 
When that equation system is solved, it is possible to obtain “Tf”. 
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3.3.4. Additional Equations 

 

Additional equations were utilized for the calculation of the factor of friction Moody, f ; coefficient of friction of 

Fanning, fC ; Prandtl law; local Nusselt number for the Low Reynolds formulation (Rokni, 2000), xpNu  and 

Correlation of Gnielinsky, Nu , respectively; these equations are given by:   
 

 

2

./
2
B

h

U
DdzdPf




 ,

4
fC f  ,   8.0Relog21

 f
f

,  
 bw

Pw
hxp TT

TT
DNu







                                      and 

  

 































 




1Pr8/7.121

Pr1000Re8/
3

2
2

1
f

fNu                                                                                  (35),(36),(37),(38) and  (39) 

 
4. Numerical Implementation 

 

After applying the method of finite differences to the algebraic equations, to obtain the temperature fields, the following 
five steps indicate the developed methodology in the numerical solution. (Garcia, 1996): 
Step 1: To define the function value of the non uniform temperatures in the walls of the duct 

 ),(),,(),0,(),,0( 4321 LxTyDTxTyTfTWm  , what that can be expressed by a Fourier expansion;  

Step2: To obtain velocity field and estimated values for “ bU ”“TWm” and “dTb/dz”; 
Step 3: Equations for the boundary conditions are evaluated (Equations 33 and 34); 
Step 4: Dimensionless energy equation (Temperature field, “Ø”) at Equation (24) is solved and “Øb” is computed 
according to Equation (30), until convergence is obtained (Øb < tolerance). This is the end of the first iterative loop; 
Step 5: A value for “dTb/dz” is computed in accordance with Equation (25). Boundary conditions are updated (step 3) to 
obtain a solution for the new temperature field (step 4), until convergence is obtained (dTb/dz < tolerance). This is the 
end of the second iterative loop; 
For all steps, “tolerance of 10-7” is the value to be accomplished by the convergence criteria, which is applicable to 
“Øb” (dimensionless bulk temperature), “dTb /dz" and “Ø” (dimensionless temperature field). 
The above procedure is applied for contours of variable temperatures. 
 
5. Results and Discussion 

 

5.1 Fluid Flow and Heat Transfer Field  

 

The Figure 2(a) shows the utilized grid (120X120) in the numerical simulation for the formulations of Low Reynolds, 
the Figure 2(b) it represents the secondary flow contours and comparisons of the velocity profile (NLEVM, Assato 
2001) with the experimental work of the Melling and Whitelaw (1997) for fluid water and Re=42000.  
 
 

  
(a) 

 
(b) 

Figure 2: (a) Grid 120X120 for numerical simulation (b) Secondary flow contours and 
comparisons of the axial mean velocity with Melling and Whitelaw (1973) for water 

utilizing NLEVM Model 
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The predicted distributions of the friction coefficient (NLEVM and RSM) and Nusselt number (SED and GGDH) de-
pendence on Reynolds number for fully developed flow and heat transfer in a square duct is shown in Figure 3(a) and 
3(b), respectively.  
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Figure 3: (a) Friction coefficient for fully developed flow, (b) Nusselt  number dependence on Reynolds number for 
fully developed flow 

 
Figure 4(a): comparisons of the Results (RSM-SED) numerical with the experimental for temperature profile (wall con-
stant temperature) )/()( CWmfWm TTTT  with fluid air and Re=65000 (Hirota, 1997) are shown, the figure 4(b) 
shows the variation of the temperature profile with non-uniform wall Temperature: south=400K, north=373K, 
east=393K, west=353K; it called of Case I.  
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 (b) 

Figure 4: (a) Results (RSM-SED) numerical and (Hirota et al [15]) experimental for mean 
temperature (uniform wall temperature) (b) Fluid temperature with non-uniform wall 

Temperature (Case I). 
 

Already the Figure 5(a) shows:  The variation of the temperature profile with non-uniform wall temperature, this it is 
represented by means of functions sine (Case II), south=(350-20Sin(ζ))K, north=(400-50Sin(ζ))K, 
east=(330+20Sin(ζ))K, west=(350+50Sin(ζ))K. where ζ is function of the radians (0-/2) and i,j (points number of the 
grid in the direction x and y, respectively). The Figure 5(b) represent the behavior of the “Tb” and “DTb/dz” for differ-
ent square cross-sectional sections along of the direction of the main flow, according to Equation (31). 
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Figure 5: (a) Fluid temperature with non-uniform wall temperature (Case II) (b) Behavior “Tb” for different square 

cross-sectional sections and cases throughout of the direction of the main flow. 

 
The Figures 6 (a) e (b), shown the temperature distribution for a rectangular duct of the aspect ratio(1:2) represented 
also by means of functions sine (Case II). Exist a third case denominated Case III, it is represented by: 
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 K, where some results for rectangular ducts will be shown in the Table I. 

 
 

 
(a) 

 
(b) 

Figure 6: (a) Retangular duct of aspect ratio (1:2) case II, Re=65000 with Tb=300 K, utilizing the SED model (b) 
Retangular duct of aspect ratio (1:2) with constant temperature in the perimeter Twm=373 K, Re=65000 with Tb=300 

K, utilizing the SED model. 

 
Garcia (1996) analyzed the laminar flow with the coupled of the conduction and radiation in rectangular ducts and 
concluded that as increases the aspect ratio, the Nusselt number found for the coupling (non uniform temperature), 
differs from that found for ducts with constant temperature imposed around the perimeter of the section. That shows 
that would be admissible to make a mistake in the case of using literature results without calculating the energy 
equation. 
In the present work, the variations of the average Nusselt number for a square duct and different cases analyzed 
(uniform and non uniform temperature in the perimeter) are minimal.  Already in the case of rectangular duct with an 
aspect ratio (1:2), the variations should be taken into account as shown in Table 1.     
 

Table 1. Numerical results obtained through RSM-SED model (Rivas, 2010), for the averaged Nusselt number in a 
rectangular duct with aspect of ratio (1:2).  

 
Cases Analyzed Reynolds number 

(Re) 
Nusselt number 
calculated  (Nu) 

Correlation Dittus 
Boelter (Nu). 

Temperature 
 Constant 

65000 145, 910 142,89 

Case II 65000 139, 682 - 
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Case III 65000 145, 059 - 
Temperature 

 Constant 
28853 79, 101 77,1 

Case III 28853 76, 769 - 
 
5.2 Heat conduction coupled to turbulent forced convection  

  

The Figure 7 shows, the grid non-uniform utilized for the coupled solid-fluid. 
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Figure 7.   Grid non-uniform coupled solid-fluid 
 
The figure 8 shows below, different cases for the temperatures prescribed in the external contour of the plates coupled 
(solid), the case (a) shows constant temperatures in the all external contour of 373K, (b) different temperatures in the 
face North=600K, south=500K, east and west 373K and the case (c) shows a example qualitative representing the ver-
satility of the program to work with different thermal conductivities, (Rivas, 2010). 
 

 
 

Figure 8. Coupled solid-fluid with prescribed conditions (a) external temperatures Text= 373K; (b) different tempera-
tures in the face North=600K, south=500K, east and west 373K, (c) example qualitative representing the versatility of 

the program to work with different thermal conductivities. 
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6. Conclusions 

 

The results presented for the friction factor and Nusselt number in function of a large range of the Reynolds number for 
uniform wall temperature present good agreement with the experimental works and correlation of the literature, (Figure 
3(a), (b)) using the turbulent convective heat transfer proposed. Figures 4(b) and 5(a) show new results investigated in 
present work, note a distortion of the temperatures field and as consequence the variation of the Nusselt number caused 
mainly by the distribution of the non-uniform wall temperature (Case I and II, with fluid air and Re=65000, 
respectively). Most applications can be approximated by the functions sine and cosine in the wall, but we are able to 
resolve by means of the methodology presented, any peripheral heat flux variation that can be expressed by a Fourier 
expansion (Kays and Crawford [30]). The Figure 5(b) shows the comparisons of the behavior of the curves “Tb” and 
“DTb/dz” to the long of the main direction of the flow for Case II and Case uniform wall temperature. The variations of 
the average Nusselt number for a square duct and different cases analyzed (uniform and non uniform temperature in the 
perimeter) are minimal.  Already in the case of duct with an aspect ratio (1:2) the variations should be taken into 
account. These results can be helpful in the project of thermal devices as in heat transfer and secondary flows in 
cavities, seals, channel of gas turbines and others. The coupled solid fluid represent good qualitative results. 
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