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Abstract. The turbulence phenomena has been widely investigated by the use of the Large-Eddy Simulation (LES) method-
ology. However, its success is associated with the appropriate choice of subgrid scale model and the initial conditions
for the problem. An acceptable initial condition can be generated through the investigation of the transition phenomena.
The propagation and interactions of Tollmien-Schlichting waves in a boundary layer flow can be a transitional way from
laminar to turbulent state. Thus, this paper aims the study of the influence of Smagorinsky subgrid scale model in the
evolution of Tollmien-Schlichting waves. For this the vorticity-velocity formulation is used and it is assumed periodicity
in the spanwise direction. High order compact finite difference schemes are applied to discretize the spatial derivatives in
the streamwise and wall normal directions. A spectral method is used to discretize the spatial derivative in the spanwise
direction and the time derivative is integrated by a classical fourth order Runge-Kutta method. The Poisson equation is
solved by a multigrid technique. The code parallelization is provided by the Message Passing Interface library.
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1. INTRODUCTION

In recent years, many resources have been invested in research related to the understanding and control of turbulent
flows. Thus many efforts have been focused on the development of numerical tools for the simulation of turbulent flows,
which increase the demand for mathematical models and simulation methods that best estimate such effects. The main
methodologies used to study numerically turbulent flows are DNS (Direct Numerical Simulation), RANS (Reynolds
Averaged Navier-Stokes) and LES (Large Eddy Simulation).

DNS captures all scales of the turbulent flow then it requires a extremely refined grid and time step. In the most in-
dustrial applications, where Reynolds numbers are very high, this methodology exceeds the capacity of the most powerful
computers currently available (Lesieur and Métais, 1996).

In RANS the dependent variables are decomposed into mean and fluctuating parts by applying time average in Navier-
Stokes equations. As results, only the averaged motion is computed and the effect of fluctuations is modeled. The great
advantage of this methodology is the use of coarser grids which implies in lower computational cost. On the other hand,
this model does not capture detailed information of the flow, since these are lost by applying the time average.

In the LES approach, the turbulent scales are split into two groups: the group of large scales and small scales. The large
scales are resolved directly, while small scales are modeled using so-called subgrid scale models (Wilcox, 1994; Lesieur
and Métais, 1996; Rodi et al., 1997). According to Lesieur and Métais (1996), usually the most relevant information is
contained in the larger scales of flow which explains the idea behind this methodology. Due to the separation process,
LES has become an alternative with a smaller computational effort than DNS simulations, then it can be applied to solve
flows with higher Reynolds numbers justifying its growth use in recent years.

The success of simulations using LES is associated with the appropriate choice of subgrid scale model and the initial
conditions for the problem. An acceptable initial condition can be generated through the investigation of the laminar-
turbulent transition phenomena. The propagation and interactions of Tollmien-Schlichting (TS) waves in a boundary
layer flow can be a transitional way from laminar to turbulent state (Schlichting, 1979). These waves arise when some
disturbance interacts with flow, ie. wall roughness, sound waves and vibrations. Depending on the Reynolds number these
TS waves can have an exponential growth or decay in the downstream direction. If they grow, depending on the initial
amplitude, they can amplify until reach large enough amplitudes that nonlinearities take over and the flow can go from the
laminar to turbulent state. In experimental studies of Tollmien-Schlichting waves the disturbances are introduced in the
flow through a vibrating ribbon located shortly downstream of the leading edge (Medeiros and Gaster, 1999). In numerical
studies this disturbances may be introduced at the wall, through a periodic blowing and suction strip. According to Fasel
et al. (1990) the second method has proved to be a very efficient method to introduce this kind of disturbance. In this
paper the second method was adopted.

In this sense, the objective of this work is to investigate the influence of Smagorinsky subgrid scale model in the
evolution of TS waves in a laminar boundary layer flow. Results of amplitude development and growth rate of Tollmien-
Schlichting waves in the downstream direction with a DNS code and LES code with different values of Smagorinsky
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constant are compared with Linear Stability Theory (LST) (Mendonça, 2000).

2. LARGE-EDDY SIMULATION

The earliest works involving LES were motivated by meteorological applications. In 1963, the meteorologist Smagorin-
sky using the ideas of Reynolds decomposition proposed this new simulation methodology and performed the 3D first
attempts to simulate the climate. Other works such as Lilly (1967) and Deardorff (1974) also had great importance for the
dissemination of this new simulation technique. In recent years, along with the improvement of computers and simulation
techniques, LES has became one of the most used and promising simulation methodologies for the solution of turbulent
flows.

The fundamental principle of this methodology is the separation of large and small scales of turbulence through a
spatial filtering process (Wilcox, 1994; Lesieur and Métais, 1996; Sagaut, 2006). The filtering process is applied on
primitive governing equations and the separation of scales is controlled by characteristic filter width (∆c), where ∆c

determines the the cutoff frequency (Lesieur and Métais, 1996; Piomelli, 1999; Meneveau and Katz, 2000; Sagaut, 2006).
So, the scales that have a greater size than the cutoff frequency are called a large scale (filtered) while the other one are
called small scales (subgrid scales). As result, the filtered variables are resolved directly from the filtered equations and
the smaller structures are modeled.

It should be noted that after the separation process appears an additional tensor that leads to the Turbulence Closure
Problem. Thus, this additional tensor is replaced by a subgrid scale model that introduces the effect of small scales on the
filtered equations (Germano et al., 1991; Lilly, 1992; Pope, 2000).

3. FORMULATION

The filtered Navier-Stokes and continuity equations for incompressible, isothermal Newtonian fluid flow are given by:

∂ui
∂t

+
∂(uiuj)

∂xj
= − 1

ρ0

∂P

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
+ τij

]
, i = 1, 2, 3 (1)

∂ui
∂xi

= 0, (2)

where ui are the velocity vector components in the xi coordinate direction and P is the pressure. ρ0 and ν are the density
and kinematic viscosity of the fluid, respectively. The variable t denotes the time. The subgrid scale tensor τij results
from the unresolved subgrid scale and must be modeled by a subgrid scale model.

According to Lesieur and Métais (1996), the most subgrid scale models assumes the Boussinesq’s hypothesis to model
τij :

τij = +2νtSij +
1

3
τkkδij , (3)

where δij is Kronecker delta and νt is subgrid scale eddy viscosity. The deformation tensor of the filtered field is defined
as:

Sij =
1

2

(
∂ui
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+
∂uj
∂xi

)
. (4)

By replacing Eq. (3) and Eq. (4) in Eq. (1), one gets

∂ui
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+
∂(ujui)

∂xj
= − 1

ρ0

∂Pmod
∂xi

+ 2
∂

∂xj
[(ν + νt)Sij ] , (5)

where Pmod = P − 1
3ρ0τkk is a modified pressure.

Now, the question is how νt should be modeled in order to better estimate the effects of subgrid scales in the filtered
solution. In this paper, the Smagorinsky subgrid scale model (Smagorinsky, 1963) was adopted.

Using nondimensional variables, the filtered Navier-Stokes and continuity equations can be rearranged as:

∂u∗i
∂t∗

+
∂(u∗ju

∗
i )

∂x∗j
= −∂P

∗
mod

∂x∗i
+

1

Re
∇2u∗i + Fνxi , (6)

∂u∗i
∂x∗i

= 0, (7)
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with

Fνxi = ν∗t∇2u∗i + 2S∗ij
∂ν∗t
∂x∗j

. (8)

The nondimensional variables (∗) can be written as

t =
t∗L

U∞
; xj = x∗jL; uj = u∗jU∞; P = ρ0U

2
∞P

∗
mod; νt = LU∞ν

∗
t ; (9)

τkk =
νU∞
L

τ∗kk; P ∗mod = P ∗ − 1

3Re
τ∗kk. (10)

Reynolds number is defined as Re = U∞L
ν , where L is characteristic plate length and U∞ the reference velocity. ∇2

denotes the Laplacian operator. In the next equations, the symbol (∗) will be omitted to facilitate the symbolism.

3.1 Vorticity-velocity formulation

In this work, the vorticity-velocity formulation is used as an alternative of the primitive variables formulation in order
to eliminate the pressure terms from governing equations. Assuming, the vorticity ω of a flow as

ω = −∇× u, (11)

the vorticity vector components become

ωx =
∂v

∂z
− ∂w

∂y
, (12)

ωy =
∂w

∂x
− ∂u

∂z
, (13)

ωz =
∂u

∂y
− ∂v

∂x
, (14)

where u, v and w are the velocity vector components of vector u in the x, y and z directions, respectively.
Thus, the nondimensional filtered Navier-Stokes equations (Eq. (6)) result in a transport equations for the components

of vorticity in x-, y-, and z- directions:
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where a = ωxv − ωyu, b = ωzu− ωxw, and c = ωyw − ωzv are the nonlinear terms.
Taking into account the filtered continuity equation (Eq. (7)) and the vorticity definition above, the Poisson equations

for u, v and w are as follows:
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3.2 Subgrid scale model

To compute the subgrid scale eddy viscosity νt it is used the Smagorinsky subgrid scale model (Smagorinsky, 1963):

νt = (Cs∆c)
2|S|, (21)

whereCs is Smagorinsky constant and |S| =
√

2SijSij is the characteristic filtered rate of strain, and ∆c = (∆x∆y∆z)
1
3

is the characteristic filter width.
Despite the growing demand for more sophisticated models of turbulence, the Smagorinsky model has been success-

fully applied in different situations. However, this model has some limitations - it is dissipative, especially near walls. One
possible solution is to decrease the value of νt close to rigid boundaries. For this, a wall-damping function is commonly
adopted then the Eq. (21) becomes

νt = (Cs∆c)
2fw|S|, (22)

where the wall-damping function is given by

fw =

1− exp

(
− y

+

25

)3
 , 0 < fw < 1. (23)

y+ = yuτ
µ is the distance from the wall in viscous wall units and uτ =

√
τw
ρ is the shear velocity. τw is the shear stress

at the wall.

4. BOUNDARY CONDITIONS

Figure 1 shows the computational domain where the equations Eq. (15) - (20) are solved. The fluid enters the at
x = x0 and exits at xmax. In the region between x3 and x4, a buffer zone is adopted, where the fluctuations are damped
in order to prevent numerical reflections at outflow boundary (Kloker et al., 1993). The basic idea behind the use of this
technique is to multiply the vorticity by a ramp function after each step of the integration method. Also, disturbances are
inserted in the domain by a mass suction/blowing technique at the wall in the region between x1 e x2.

x

z

y

x1 x2 x3 x4

x0

ymax

xmax

Figure 1. Computational domain

The boundary conditions used at the upper boundary is ωx = ωy = ωz = 0 (the flow is supposed to be irrotational).
At the wall, the no-slip condition is assumed then u, v, and w are set zero. At the outflow boundary, second derivative of
the velocity and vorticity components in the x-direction are set zero. At the inflow is specified a boundary condition of
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the Dirichlet type for v and ωz based on Falkner-Skan boundary layer solutions. After that, u is calculated by z- vorticity
definition (Eq. (14)).

The function used to introduce disturbance via a slot at the wall for the normal velocity v is:

v(i, 0, t) = f(x)iA
√
Re sin(ωtt), i1 ≤ i ≤ i2,

(24)
v(x, 0, t) = 0, i2 ≤ i and i ≤ i1,

where i1 and i2 are the first (x1) and the last (x2) point of the disturbance strip, respectively. The value of A is a real
constants that can be chosen to adjust the amplitude of the disturbances. The constant ωt is the dimensionless frequency.
The function f(x)i adopted here is a fifth order function was proposed by Zhang and Fasel (Zhang and Fasel (1999)):

f(x)i =
1

48
(729ε5 − 1701ε4 + 972ε3) if i1 ≤ i ≤

1

2
(i1 + i2),

where ε = 2
i− i1
i2 − i1

(25)

f(x)i =
−1

48
(729ε5 − 1701ε4 + 972ε3) if

1

2
(i1 + i2) ≤ i ≤ i2,

where ε = 2
i2 − i
i2 − i1

.

5. NUMERICAL METHOD

This work assumes periodicity in z-direction therefore it was adopted a spectral method in this direction. Using the
conditions of periodicity, all variables can be written as combinations of K Fourier modes

f(x, y, z, t) =
K∑
k=0

Fk(x, y, t)e−iβkz, (26)

where f is a generic variable, i =
√
−1 is the imaginary unit and βk is the wave number in the spanwise direction, given

by

βk =
2πK

λz
, (27)

where λz is the spanwise wavelength of the fundamental Fourier mode. Also, the variables of physical space are repre-
sented by lowercase letters (f ) and the variables of the Fourier space by capital letters (F ).

Substituting Eq. (26) in the vorticity transport equations Eq. (15) - (17) and in the Poisson equations Eq. (18) - (20),
these equations can be rewritten, for each K Fourier mode as

∂Ωxk
∂t

+
∂Ak
∂y

+ iβkBk =
1

Re
∇2
kΩxk − iβkFyk −
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=
1
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∇2
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+
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=

1
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, (31)
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, (33)
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with modified Laplacian operator

∇2
k =

(
∂2

∂x2
+

∂2

∂y2
− β2

k

)
. (34)

The domain discretization is performed using high order compact finite difference schemes in the streamwise and
wall normal directions. The temporal integration of the transport of vorticity equations are carried out by a 4th order
Runge-Kutta method. The solution of Poisson’s equation is done via a multigrid method called FAS (Full Approximation
Scheme). In order to reduce the computational cost and improve numerical resolution near to the wall, we adopted a
technique known as stretching in the wall-normal direction. In the present paper, the stretching factor stf is constant
then the spacing between the computational points in the wall-normal direction is obtained by a geometric progression.
In addition, the code is parallelized by domain decomposition strategy in the streamwise direction. The Message Passing
Interface library is used for the communications in the parallelization process.

6. RESULTS

In the present results the Reynolds number is Re = 322326 and four values to Cs (0.01, 0.02, 0.032, 0.05) are used.
A DNS code was also used in order to compare with the LES results. The domain is discretized using 473 points in
the streamwise direction and 137 points in the wall-normal direction. The distance between two consecutive points in
the streamwise direction is 0.008. The number of Fourier modes is K = 2 with 4 points in the physical space and the
time step is dt = 0.022. Also, the disturbances at the wall are inserted between 1.12 < x < 1.4 and the buffer zone is
situated in 3.9 < x < 4.3. The stretching value adopted was stf = 1% and the distance from the wall to the first point in
wall-normal direction was 0.00018. The fundamental wavenumber in the spanwise direction is λz = 0.4. The parameter
to adjust the disturbance amplitude was A = 1× 10−6, and ωt = 22.27, corresponding to 550 Hz.

Figure 2 shows the growth rate of a TS wave simulated using DNS, LST and LES strategies. The DNS and LST
results are in good agreement. After the receptivity region, the TS wave shows an unstable behavior up to the streamwise
position x = 2.8. After this region, disturbances tend to be suppressed. Regarding LES cases on DNS mesh parameters,
the growth rate of the TS wave starts with values that gives a more stable behavior. For these cases the Smagorinsky
model acts damping the disturbances, and the damping effect is higher with higher values of the Smagorinsky constant.
This results agrees with literature observations.

Figure 2. Growth rate of disturbances

The results for the streamwise development of the maximum streamwise velocity disturbance in the wall normal
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direction for the DNS and LES simulations are presented in Fig. 3. It can be observed that the disturbance is initially
damped by the LES model, and the damping effect is higher with higher values of Smagorinsky constant value.

Figure 3. Downstream development of the maximum streamwise velocity disturbance in the wall-normal direction

The disturbance vorticity contours of each simulation (DNS and LES) are showed in the Fig. 4. It can be observed that
the disturbance introduced by the LES model increases with the Smagorinsky constant value. The values showed with in
all cases goes from −0.002 to 0.002. It can be observed that the Tollmien-Schlichting waves are damped with the LES
model, and it vanishes where it should have some amplitude.

7. CONCLUSION

This work presented a numerical method using LES to solve a three-dimensional incompressible flow in order to in-
vestigate the influence of Smagorinky subgrid scale model on evolution of TS waves. The numerical results for amplitude
development and growth rate of TS waves in the downstream direction using DNS and LES codes were compared with
LST. The results obtained demonstrated that the is not possible to compute transitional scenario with the Smagorinsky
model.

The next step of this research is to investigate other subgrid scale models such as WALE (Wall-Adapting Local Eddy-
viscosity) (Nicoud and Ducros, 1999) model and Dynamics model (Germano et al., 1991) to modelate νt. In the end, the
objective is to obtain a three-dimensional code using the LES methodology to simulate atmospheric flows.

8. ACKNOWLEDGEMENTS

The authors acknowledge the financial support received from FAPESP under 2011/00647-9, 2012/25121-2 (BEPE),
2011/08010-0, and 2013/00553-0 (BEPE) processes.

9. REFERENCES

Deardorff, J.W., 1974. “Three-dimensional numerical study of the height and mean structure of a heated planetary bound-
ary layer.” Boundary-Layer Meteorology, Vol. 7, pp. 81–106.

Fasel, H.F., Rist, U. and Konzelmann, U., 1990. “Numerical investigation of the three-dimensional development in
boundary-layer transition”. AIAA, Vol. 28, pp. 29–37.

Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., 1991. “A dynamic subgridscale eddy viscosity model”. Physics of
Fluids, Vol. 4, pp. 1760–1765.

ISSN 2176-5480

6597



P. Sartori, J. K. Rogenski and L. F. Souza
The Influence of Subgrid Model in Transitional Scenario

(a) DNS results

(b) Cs = 0.01 (c) Cs = 0.02

(d) Cs = 0.032 (e) Cs = 0.05

Figure 4. Isocountours of disturbance vorticity in the spanwise direction for each simulation
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