

THERMOPHYSICAL PROPERTIES OF DIESEL/BIODIESEL BLENDS

Edson Rodrigues da Silva¹ Ricardo Belchior Tôrres^{1,2}

¹Departamento de Engenharia Mecânica, Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco, 3972, 09850-901, São Bernardo do Campo, São Paulo, Brazil

²Departamento de Engenharia Química, Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco, 3972, 09850-901, São Bernardo do Campo, São Paulo, Brazil

belchior@fei.edu.br

Abstract. Fuel quality is defined in terms of a range of values that certain properties, such as density, viscosity and heat of combustion can provide. The main motivation of this study is that these properties significantly affect the atomization process, which is the initial stage of combustion in a diesel engine. As a continuation of an experimental study and optimization of processes involving biofuels, in the present work, density, viscosity, speed of sound and heat of combustion of binary mixtures of biodiesel with different diesel (S10, S500 and S1800) were determined as a function of composition at different temperatures. Both pure liquid and mixture viscosity were measured using a Stabinger viscosimeter (Anton Paar SVM 3000M). Density and speed of sound were measured using a commercial density and speed of sound measurement apparatus (Anton Paar DSA 5000). The calorific value was measured using a IKA C2000 Calorimeter and the equipment was calibrated using benzoic acid. The experimental results showed that the heat of combustion of the blends decreases when the concentration of biodiesel and sulfur content in diesel fuel increases. For the others properties, the properties values increase with increasing biodiesel concentration.

Keywords: Thermophysical properties, biodiesel, diesel

1. INTRODUCTION

Many efforts to develop clean fuels have been under way in many countries and among many possible sources, biodiesel fuel derived from vegetable and animal fat has attracted attention as a possible substitute for petrodiesel fuels (Balat and Balat, 2010; Enweremadu and Mbarawa, 2009; Murugesan, *et al.*, 2009; Pinto, *et al.*, 2005, Fangrui and Milford, 1999). Brazil is as an emerging power in the production of biodiesel, especially due to the following reasons. First, Brazil has climatic conditions to grow different kinds of crops. Soybean oil is already used for biodiesel production and other sources may be used in the future. Second, Brazil is the world's leader in ethanol production from sugar cane, and the production of biodiesel using ethanol may become economically viable.

Biodiesel has many advantages over petroleum-based diesel fuel. However, there are some drawbacks of using biodiesel in diesel engines such as higher cost and poor low temperature properties. Blending is one of the methods to overcome the performance deficiency of using pure biodiesel in combustion engines. Physical properties of biodiesel such as density, viscosity, and low temperature properties can be improved when it is mixed with diesel fuel.

Some studies have been carried out to investigate the variation of thermophysical properties of biodiesel/diesel blends (Baroutian, *et al.*, 2012; Santos, *et al.*, 2011; Kumar *et al.*, 2011; Parente, *et al.*, 2011; Baroutian, *et al.*, 2009; Alptekin and Canakci, 2008). However, to best our knowledge, no comprehensive study has been conducted to investigate the variations in density, viscosity, speed of sound and heat of combustion of biodiesel/diesel blends with diesel fuel containing different sulfur contents. In present study, density, viscosity, speed of sound and heat of combustion of binary mixtures of biodiesel with different diesel (S10, S500 and S1800) were determined as a function of composition at different temperatures.

2.1. EXPERIMENTAL SECTION

The samples of biodiesel and different diesel fuel were provided by Ipiranga Produtos de Petróleo S/A. All samples of the fuels used in this study were certified in accordance with current legislation and standards of the National Agency of Petroleum, Natural Gas and Biofuels (ANP). Mixtures were prepared at a volume fraction (%VV) from B2 (indicates 2% of biodiesel with 98% diesel) to B100 (100 % biodiesel).

Density and speed of sound were measured using a commercial density and speed of sound measurement apparatus (Anton Paar DSA 5000). The equipment was calibrated with air and water. The uncertainty in density and speed of sound was, respectively, \pm 0.000005 g·cm⁻³ and 0.1 m·s⁻¹. The viscosity of the blends was determined by using a Viscosimeter Stabinger manufactured by Anton Paar (Model SVM 3000). The uncertainty in viscosity was \pm 0.35% of the measurement value. Heating values were determined using an IKA bomb calorimeter (Model C-2000) according to ASTM D240.

E.R. da Silva, R.B. Tôrres Thermophysical Properties of Diesel/Biodiesel Blends

2.2. RESULTS AND DISCUSSIONS

Figures 1 and 2 show the variation in densities and speed of sound of diesel/biodiesel blends as a function of volume fraction at different temperatures. The density and speed of sound of biodiesel are higher than all diesel studied. The results show that the density and speed of sound the blends increase with increasing biodiesel composition.

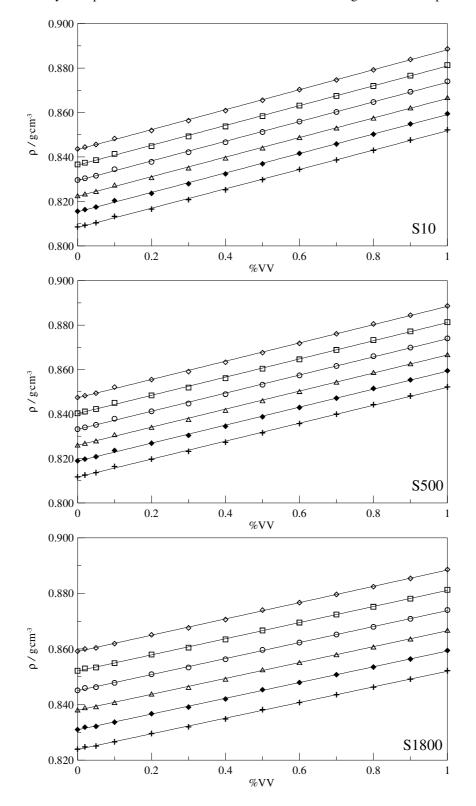


Figure 1. Density values, ρ , as a function volume fraction of biodiesel, for biodiesel/diesel blends as different temperatures: \diamond , 10 °C; \Box , 20 °C; O, 30 °C; \triangle , 40 °C; \blacklozenge , 50 °C; \bigstar , 60 °C. (----) Eq. (1).

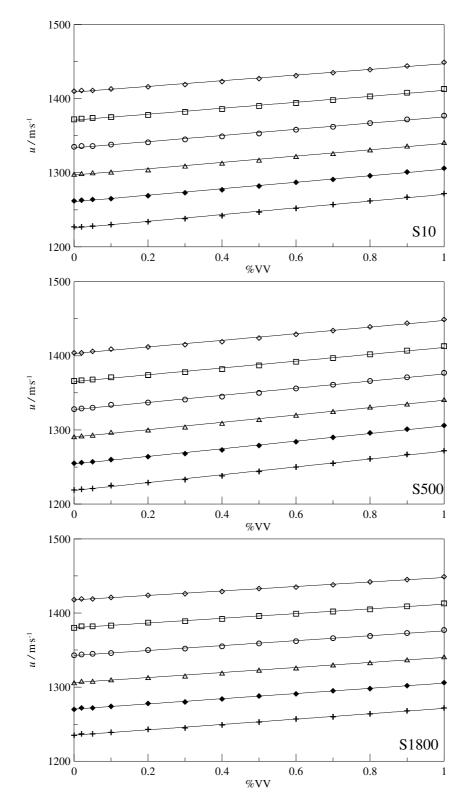


Figure 2. Speed of sound values, *u*, as a function volume fraction of biodiesel, for biodiesel-diesel blends as different temperatures: \diamond , 10 °C; \Box , 20 °C; O, 30 °C; \triangle , 40 °C; \blacklozenge , 50 °C; \bigstar , 60 °C. (----) Eq. (2).

The experimental data were correlated as a function of composition at different temperatures by means of the following empirical linear equations:

$$\rho/g \cdot cm^{-3} = aw + b$$

(1)

(2)

E.R. da Silva, R.B. Tôrres Thermophysical Properties of Diesel/Biodiesel Blends

and

$$c/\mathbf{m}\cdot\mathbf{s}^{-1}=aw+b,$$

where ρ is density, c is speed of sound, a and b are coefficients and w is volume fraction. Tables 1 and 2 show the values of a and b and the coefficients of determination, R^2 . It is possible to observe that there is a good agreement between the measured and estimated values.

Table 1 - Linear regression parameters and R^2 for densities according to Eq. (1).

Temperature / °C	Linear regression: $\rho/g \cdot cm^{-3} = aw + b$			
	$a / g \cdot cm^{-3}$	$b / g \cdot cm^{-3}$	R^2	
	Biodiesel + diesel S10			
10 °C	0.0448678778	0.8433316093	0.999617	
20 °C	0.0445470031	0.8363585533	0.999563	
30 °C	0.0442403540	0.8293734022	0.999494	
40 °C	0.0439943287	0.8223411222	0.999509	
50 °C	0.0437395110	0.8153214557	0.999476	
60 °C	0.0435148378	0.8082790272	0.999492	
	Biodiesel + diesel S500			
10 °C	0.0410814560	0.8473233300	0.999454	
20 °C	0.0408960478	0.8402229241	0.999435	
30 °C	0.0407301210	0.8331040174	0.999428	
40 °C	0.0405878984	0.8259664158	0.999418	
50 °C	0.0404617973	0.8188219068	0.999409	
60 °C	0.0403454991	0.8116634285	0.999419	
	Biodiesel + diesel S1800			
10 °C	0.0292937931	0.8591035825	0.999669	
20 °C	0.0290212109	0.8520680658	0.999687	
30 °C	0.0287824669	0.8450375123	0.999623	
40 °C	0.0285536621	0.8379869309	0.999591	
50 °C	0.0283332302	0.8309321468	0.999576	
60 °C	0.0281249103	0.8238687115	0.999590	

Table 2 - Linear regression	parameters and R^2	for speed of sound	l according to Eq. (2).

Temperature / °C	Regressão linear: $c / m \cdot s^{-1} = aw + b$			
	$a / \mathrm{m} \cdot \mathrm{s}^{-1}$	$b / \mathrm{m \cdot s}^{-1}$	R^2	
	Biodiesel + diesel S10			
10 °C	38.39458527	1408.716320	0.993501	
20 °C	39.88653818	1371.014768	0.994373	
30 °C	41.34712634	1333.702039	0.994996	
40 °C	42.95655937	1296.768613	0.995657	
50 °C	44.19279959	1260.698162	0.996004	
60 °C	45.51477747	1225.437130	0.996329	
	Biodiesel + diesel S500			
10 °C	44.51277882	1403.006448	0.996041	
20 °C	46.26149884	1365.075650	0.996626	
30 °C	48.00062950	1327.495884	0.996879	
40 °C	49.82074512	1290.289112	0.996418	
50 °C	51.39186269	1253.962871	0.997396	
60 °C	53.02726777	1218.397548	0.997671	
	Biodiesel + diesel S1800			
10 °C	30.04688189	1417.742221	0.997076	
20 °C	31.44273664	1380.151074	0.997645	
30 °C	32.70990620	1342.975063	0.997714	
40 °C	33.97182471	1306.181303	0.996697	
50 °C	35.23625071	1270.260314	0.998067	
60 °C	36.44169272	1235.109982	0.998310	

Figure 3 shows the variation in viscosities of binary blends of biodiesel + diesel fuel as a function of volume fraction at different temperatures. The biodiesel viscosity is higher than of diesel. The results indicate that viscosity blend increases nonlinearly with increasing biodiesel composition.

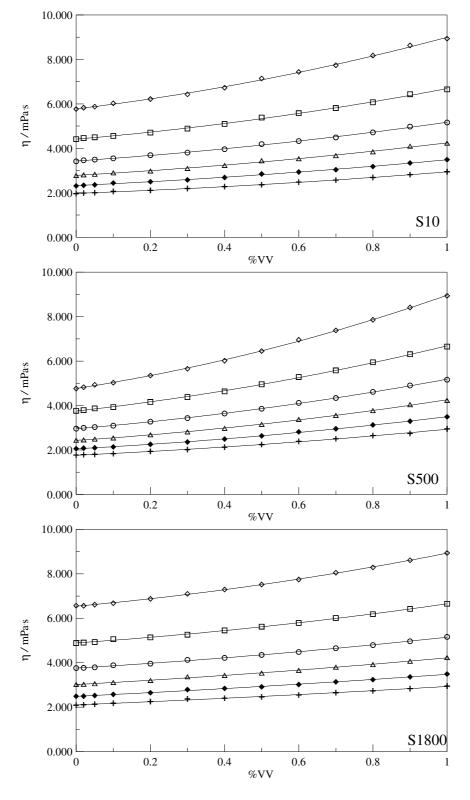


Figure 3. Viscosity values, η , as a function volume fraction of biodiesel, for biodiesel-diesel blends as different temperatures: \diamond , 10 °C; \Box , 20 °C; O, 30 °C; \triangle , 40 °C; \blacklozenge , 50 °C; \bigstar , 60 °C. (----) Eq. (3).

E.R. da Silva, R.B. Tôrres Thermophysical Properties of Diesel/Biodiesel Blends

The experimental data were correlated as a function of composition at different temperature by means of the following empirical equation:

$$\eta/\mathrm{mPa} \cdot \mathrm{s} = a \ln w + b \,, \tag{3}$$

where η is viscosity, *a* and *b* are coefficients and *w* is volume fraction. Table 3 shows the values of *a* and *b* and the coefficients of determination, R^2 . It is possible to observe that there is a good agreement between the measured and estimated values.

Temperatura / °C	Regression: $\eta / mPa \cdot s = a \ln w + b$			
	a / mPa⋅s	<i>b</i> / mPa·s	R^2	
	Biodiesel + diesel S10			
10 °C	0.4413290600	1.7445604104	0.996466	
20 °C	0.4134141921	1.4756975081	0.996262	
30 °C	0.4090607462	1.2251470895	0.997130	
40 °C	0.4203129913	1.0168301685	0.996011	
50 °C	0.4032840733	0.8381880608	0.997074	
60 °C	0.3968600497	0.6724954491	0.997076	
	Biodiesel + diesel S500			
10 °C	0.6326799255	1.5543997640	0.998927	
20 °C	0.5777869277	1.3157131453	0.998706	
30 °C	0.5611449126	1.0770641752	0.998781	
40 °C	0.5596037142	0.8797988554	0.997892	
50 °C	0.5318318497	0.7117944771	0.998083	
60 °C	0.5070381579	0.5626230841	0.997833	
	Biodiesel + diesel S1800			
10 °C	0.3082788530	1.8703063035	0.996188	
20 °C	0.3049924941	1.5800683609	0.995872	
30 °C	0.3125859003	1.3194974006	0.997750	
40 °C	0.3335886032	1.1022056083	0.997903	
50 °C	0.3338186450	0.9113089404	0.997620	
60 °C	0.3324813990	0.7435821900	0.996040	

Table 3 - Regression parameters and R^2 for viscosity according to Eq. (3).

Figure 4 shows the heating values for the studied systems as a function of composition at 25 °C. It is also possible to observe that biodiesel heating values are lower than diesel S10, S500 and S1800, meaning that for same amount of energy it will be necessary a greater amount of biodiesel.

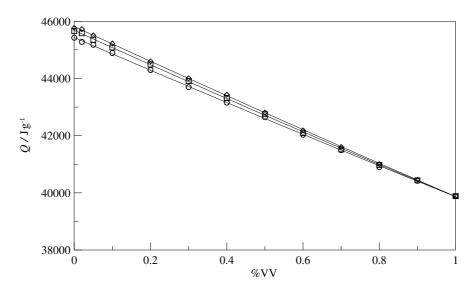


Figure 4. Heating values, Q, as a function volume fraction of biodiesel, for biodiesel-diesel blends: \Diamond , S10; \Box , S500; \bigcirc , S1800. (----) Eq. (4).

The heating values were correlated with the composition using the following empirical equation:

$$Q/\mathbf{J} \cdot \mathbf{g}^{-1} = \sum_{j=0}^{2} A_{j} w^{j} , \qquad (4)$$

where Q is heating, A_j are coefficients and w is volume fraction. Table 4 shows the values of A_j and coefficients of determination, R^2 . It has been found good agreement between the measured and estimated values.

System	Regression: $Q/J \cdot g^{-1} = \sum_{j=0}^{2} A_j w^j$			
	A_0 / J·g ⁻¹	$A_1 / \mathbf{J} \cdot \mathbf{g}^{-1}$	A_2 / J·g ⁻¹	R^2
Biodiesel + diesel S10	45816.12547	-6109.928748	162.5924875	0.999948
Biodiesel + diesel S500	45682.21357	-6060.199388	243.8610469	0.999877
Biodiesel + diesel S1800	45434.19768	-5774.876341	207.9980758	0.999902

Table 4 - Regression parameters and R^2 for heating at 25 °C according to Eq. (4).

2.3. CONCLUSIONS

An investigation was performed on the effect of composition and temperature on thermophysical properties when diesel and biodiesel were blended. By reducing temperature and increasing the biodiesel volume fraction, the density, speed of sound and viscosity of blend are increased. Density and speed of sound increased linearly with composition, whereas viscosity increased nonlinearly. Heating values decreases with increasing biodiesel concentration and sulfur contents. In this study, experimental data of the studied properties were correlated with empirical linear and polynomial equations and the results presented excellent agreement between the measured and the estimated values. The constants of these correlations are independent of the type of diesels.

3. ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Fundação Educacional Inaciana Padre Saboia de Medeiros (FEI), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Process 2009/14556-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial and institutional support.

4. REFERENCES

Alptekin, E. and Canakci, M., 2008. "Determination of the density and the viscosities of biodiesel-diesel fuel blends". *Renewable Energy*, Vol. 33(12), p. 2623.

Balat, M. and Balat, H., 2010. "Progress in biodiesel production". Applied Energy. Vol. 87, p. 1815.

- Baroutian, S., Aroua, M.K., Raman, A.A.A. and Sulaiman, N.M.N., 2009. "Viscosities and densities of binary and ternary blends of palm oil + palm biodiesel + diesel fuel at different temperatures". *Journal of Chemical Engineering Data*, Vol. 55, p. 504.
- Baroutian, S., Shahbaz, K., Mjalli, F.S., Hashim, M.A. and AlNashef, I.M., 2012. "Densities and Viscosities of Binary Blends of Methyl Esters + Ethyl Esters and Ternary Blends of Methyl Esters + Ethyl Esters + Diesel Fuel from T = (293.15 to 358.15) K". *Journal of Chemical Engineering Data*, Vol. 57, p. 1387.
- Enweremadu, C.C. and Mbarawa, M. M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil A review". *Renewable Sustainable Energy Review*. 2009, 13, 2205–2224.

Fangrui, M. and Milford, A.H., 1999. "Biodiesel production: a review". Bioresource Technology, Vol. 70, p. 1.

Kumar, S., Yadav, J.S., Sharma, V.K., Lim, W., Cho, J.H., Kim, J. and Moon, I., 2011. "Physicochemical properties of jatropha curcas biodiesel + diesel fuel no. 2 binary mixture at T = (288.15 to 308.15) K and atmospheric pressure". *Journal of Chemical Engineering Data*, Vol. 56, p. 497. E.R. da Silva, R.B. Tôrres Thermophysical Properties of Diesel/Biodiesel Blends

- Murugesan, A., Umarani, C., Subramanian, R. and Nedunchezhian, N., 2009. "Bio-diesel as an alternative fuel for diesel engines A review". *Renewable Sustainable Energy Review*, Vol. 13, p. 653.
- Parente, R.C., Nogueira, C.A., Carmo, F.R., Lima, L.P., Fernandes, F.A.N., Santiago-Aguiar, R.L.S. and Sant'Ana, H.B., 2011. "Excess volumes and deviations of viscosities of binary blends of sunflower biodiesel + diesel and fish oil biodiesel + diesel at various temperatures". *Journal of Chemical Engineering Data*, Vol. 56, p. 3061.
- Pinto, A.G., Guarieiro, L.L.N., Rezende, M.J.C., Ribeiro, N.M., Torres, E.A., Lopes, W.A., Pereira, P.A.P., and de Andrade, J.B., 2005. "Biodiesel: An overview". *Journal of Brazilian Chemical Society*, Vol. 16, p. 1313
- Santos, R.O., Compri, I.G., Morandim-Giannetti, A.A. and Torres, R.B., 2011. "Optimization of the transesterification reaction in biodiesel production and determination of density and viscosity of biodiesel/diesel blends at several temperatures". *Journal of Chemical Engineering Data*, Vol. 56, p. 2030.
- Sharma, Y.C., Singh, B. and Upadhyay, S.N., 2008. "Advancements in development and characterization of biodiesel: A review". *Fuel*, Vol. 87, p. 2355.