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Abstract. We review and implement efficient methods to investigate hyperbolic dynamical structures in the Spatial Circular
Restricted Three-Body Problem (SCR3BP). We aim to obtain invariant objects related to the practical stability domains
around the triangular equilibrium points of the SCR3BP. These domains are regions in the phase space where trajectories
remain confined for very long time spans. The Trojan asteroids that follow the orbit of Jupiter around the Sun are a
popular example of the existence of such domains in natural systems. In this work, we employ suitable algorithms to
compute hyperbolic invariant objects in the center manifold of L3 of the Sun-Jupiter system, namely hyperbolic periodic
orbits and two-dimensional tori with their stable and unstable invariant manifolds. Correspondence checks between these
numerically constructed structures and approximated solutions obtained from the analysis of capture-escape transitions
can establish whether these objects play a role in the determination of the effective stability boundaries that offer a
preliminary model for the motion of the Trojans.
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1. INTRODUCTION

It is known that the invariant manifolds of a dynamical systems organize the behavior of general solutions in the phase
space. Such is their importance that hyperbolic invariant solutions are often regarded as the skeleton of a dynamical
system. As a matter of fact, transversal intersections of stable and unstable invariant manifolds lead to homoclinic and
heteroclinic phenomena responsible for unpredictability of solutions which is a signature of chaotic behavior (Wiggins
(2003)). Thus, the investigation of such objects is of fundamental importance to understand and control the evolution of
any system with practical applicability.

Let us consider the Spatial Circular Restricted Three-Body Problem (SCR3BP). This particular system has a wide
variety of applications in Astronautics and Astrodynamics. For instance, it has been applied to design trajectories for
modern space mission projects (e.g. SOHO, Genesis, ISEE-3, etc.) with requirements that cannot be met by the Keplerian
decomposition of the Solar System. The theoretical framework for the construction of such trajectories has been widely
explored by Gómez et al. (2001c,d,a,b); Koon et al. (2006); Marsden and Ross (2005). Also, the SCR3BP gives a suitable
model for the motion of the Trojan asteroids in the Sun-Jupiter system (Robutel and Souchay (2010); MPC (2013)), for
the dynamics of the sharp-edged rings of Uranus which are determined by the gravitational action of the shepherd moons
Cordelia and Ophelia (Benet (2001)), and for the motion of some comets and asteroids known as Near Earth Objects
(NEO) (NASA (2013)).

The hyperbolic invariant manifolds of the SCR3BP are the backbone that allow the diverse applications mentioned
above. In particular, these structures are related to capture-escape behavior and to the determination of domains of
effective or practical stability. These domains are regions in the phase space where the particles remain confined for long
periods of time due to the presence of codimension-1 hyperbolic invariant manifolds that act as effective barriers between
captured and escaping trajectories (Simó (1998)).

We recall (see Szebehely (1967) for more details) that the SCR3BP describes the motion of a particle of negligible
mass moving under the gravitational influence of two bodies called the primaries and denoted by P1 and P2. The primaries
have massesm1 andm2, respectively, and describe circular coplanar orbits around the barycenter of this two-body system,
so that they are fixed in the synodic reference frame (which rotates with respect to an inertial frame). In this frame and
using dimensionless variables, the equations of motion of the particle are

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy, z̈ = Ωz, (1)

with the effective potential given by

Ω(x, y, z) =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+
µ(1− µ)

2
, (2)
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where the mass parameter µ = m2/(m1+m2),m1 > m2, is the only parameter of the model, and r1 =
√

(x− µ)2 + y2 + z2

and r2 =
√

(x+ 1− µ)2 + y2 + z2 denote the distance from the particle to P1 and P2, located at (µ, 0, 0) and (µ −
1, 0, 0), respectively.

The system has an energy-like integral and its Hamiltonian reads

H(x, y, z, px, py, pz) =
1

2
(p2x + p2y + p2z) + ypx − xpy −

1− µ
r1
− µ

r2
, (3)

where px = ẋ−y, py = ẏ+x, and pz = ż are the conjugate momenta of x, y, and z. Also, it presents two symmetries: the
time reversal symmetry across the plane y = 0, S1 = {(x, y, z, ẋ, ẏ, ż, t) → (x,−y, z,−ẋ, ẏ,−ż,−t)}, and the mirror
symmetry across the plane z = 0, S2 = {(x, y, z, ẋ, ẏ, ż, t)→ (x, y,−z, ẋ, ẏ,−ż, t)}.

Five equilibrium points are found for the system of equations. Three of them, L1, L2, and L3, are located on the
x-axis. The other two, L4 and L5, are located in position space at (µ − 1/2,∓31/2, 0), at the vertices of equilateral
triangles formed with the primaries. As it is well known, the triangular equilibrium points of the SCR3BP are linearly
stable for µ ∈ (0, µ1), where µ1 = (9−

√
69)/18 is the Routh critical value, and Markeev (1972) showed that L4 and L5

are non-linearly stable in this interval, except also for µ2 = (45−
√

1833)/90, µ3 = (15−
√

213)/30 and a set of initial
conditions of small Lebesgue measure for fixed µ.

The SCR3BP is an autonomous non-integrable Hamiltonian system with three degrees of freedom (i.e., six-dimensional
phase space), so some amount of Arnold diffusion is to be expected in the five-dimensional energy shell. However,
Giorgilli et al. (1989) found a bound to the rate of diffusion and obtained Nekhorosev-like estimates that predict local
stability of trajectories in a vicinity of L4 and L5 up to finite but long time. Also, there is numerical evidence of the
existence of domains (that can be quite large depending on the mass parameter) where the trajectories inherit the stable
behavior of the equilibrium points during long spans of time (Simó (1998, 2006)).

Recent results show that several codimension-1 manifolds play a role in the definition of the sharp boundaries of
such domains. Particularly, for µ = 0.0002 two different situations are described by Simó et al. (2012, 2013a,b). In the
first scenario the quasi-confinement of trajectories is related to the hyperbolic manifolds of the center manifold of the
collinear libration point L3 which is of centre-centre-saddle type. In the second scenario, confinement is related to the
hyperbolic manifolds of the center manifold associated to a family of symmetric periodic orbits that bifurcate from the
vertical periodic orbit near the center manifold of L4,5. Inside each four-dimensional center manifold there are periodic
and quasi-periodic solutions, with specific characteristics (such as period, rotation number, stability properties, etc.),
and also small chaotic zones. Preliminary analyses of capture-escape transitions by Simó (1998) indicated especially
significant quasi-periodic solutions inside these center manifolds. More recently, through a systematic investigation,
Simó et al. (2013a) established which are the families of two-dimensional hyperbolic tori are located at the boundaries
of effective stability domains. In fact, orbits outside but near the stability region depart from its vicinity guided by the
three-dimensional unstable manifolds of these tori.

In order to understand the transport mechanisms related to capture-escape processes, one needs to be able to identify,
compute and characterize the objects that play a role in the determination of the stability domains. Usually, formal
calculations give a good representation of these solutions only in a domain of small to moderate size, so numerical
methods have to be used to globalize these structures. Among other things, one needs numerical tools to: (i) detect
the quasi-stable regions, (ii) identify different invariant structures at the stability boundaries, such as hyperbolic periodic
orbits and two-dimensional tori, and (iii) compute these invariant objects and their stable and unstable manifolds.

It is valuable to note that we are interested in global five-dimensional unstable structures in a six-dimensional phase
space (or four-dimensional unstable structures in the five-dimensional energy shell), therefore, the computation and the
characterization of such objects require specific analytical and numerical techniques that take into account both their
unstable character and high-dimension. Also, the substantial computing time needed to obtain global stability domains
and families of two-dimensional tori with their hyperbolic manifolds is a concrete challenge that has to be overcome
through the implementation of efficient algorithms that often need to be modified to deal with specificities found along
the stability boundaries.

In what follows we review methods to numerically compute invariant objects at the boundaries of practical stability
domains around the triangular equilibria of the SCR3BP. Then, we apply these techniques to the concrete case of the mass
parameter corresponding to the Sun-Jupiter system and obtain several unstable periodic orbits and two-dimensional tori
with their hyperbolic invariant manifolds.

2. THEORETICAL BACKGROUND

We will highlight the theoretical background we employ to compute unstable periodic orbits, hyperbolic two-dimensional
tori and their stable and unstable invariant manifolds. Some general aspects of the methods described here can be found
in Simó (1990). Specific references are given along the text when necessary.

The dynamical system given by Eq. (1) can be rewritten as a system of six first-order differential equations given,
generically, by ż = f(z), z ∈ R6, with zT = (z1, z2, z3, z4, z5, z6). For a given initial condition z0, the solution of the
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system, or the flow, is the curve φt(z0). Due to the conservation of energy, the motion in the six-dimensional phase space
is effectively restricted to five dimensions. Another dimension is reduced by working with adequate Poincaré sections.
That is, let Σ be a section transversal to the flow, we define the four-dimensional Poincaré map P : R4 → R4 associated
to Σ and work within that map.

2.1 Computing periodic orbits

Considering the Poincaré map P and the conservation of energy, the search for a periodic solution of the system of
equations given by Eq. (1) is reduced to finding a point w ∈ R4 such that F (w) = P(w)−w = 0. To this end, we use
the Newton method: let

F (w + δ) = F (w) +
∂F

∂w
δ +O(δ2), with

∂F

∂w
= DP − I, (4)

where DP = ∂P/∂w is the differential of the Poincaré map. We want δ such that F (w + δ) = 0, that is, we solve the
linear system

(DP − I)δ = w − P(w) (5)

repeatedly until the solution converges up to a desired accuracy.
In order to compute DP we need to obtain the Jacobian of the flow corrected at Σ: let

f(z0 + ∆z)− f(z0) =
∂φt(z

0)

∂z
∆z +O(ε2) +

∂f

∂t
∆t, (6)

where
∂φt(z

0)

∂z
is the variational of the field,

∂f

∂t
is the vector field computed when the trajectory returns to Σ and ∆z are

the deviations of the initial condition. The left side of Eq. (6) is denoted by dz and corresponds to the correction of the
solution.

As a concrete example, let Σ be defined by z3 = 0. Then, in matrix form, Eq. (6) is

dz = A∆z + f∆t, (7)

where A is a 6 × 6 matrix with elements denoted by aij , i, j = 1, .., 6. Given that ∆z3 = dz3 = 0 in Σ, the third
component of Eq. (7) gives ∆t = −{a31∆z1 + a32∆z2 + a34∆z4 + a35∆z5 + a36∆z6}/f3, which is the correction in
time needed so that the corrected solution lands on the Poincaré section after one iteration of the Newton method. Using
the conservation of the energy (H(z0 + ∆z) = H(z0)) we write ∆z6 as a function of the other variations and get

∆t = − 1

f3
{(a31 + a36β1)∆z1 + (a32 + a36β2)∆z2 + (a34 + a36β4)∆z4 + (a35 + a36β5)∆z5}, (8)

with β1 = (f04 − 2f02 )/f03 , β2 = (f05 + 2f01 )/f03 , β4 = −f01 /f03 and β5 = −f02 /f03 , where f0 denotes the vector field at
the initial condition. Finally, we get DP by replacing Eq. (8) in the other components of vector Eq. (7) so that

dz1
dz2
dz4
dz5

 =


p11 p12 p14 p15
p21 p22 p24 p25
p41 p42 p44 p45
p51 p52 p54 p55




∆z1
∆z2
∆z4
∆z5

 , with (9)

pij = aij + ai6βj −
fi
f3

(a3j + a36βj), for i, j = 1, 2, 4, 5. (10)

2.2 Computing two-dimensional invariant tori

Let T1 denotes a one-dimensional torus with length equal to 2π. Let us look for invariant curves y : T1 → R4 of the
Poincaré map P . Following Castellà and Jorba (2000), we obtain these curves using a method based on the computation
of the Fourier Coefficients of a parametrization of the curves.

Let ω be the rotation number of the curve. Then, the invariance condition is given by

P(y(θ)) = y(θ + ω), ∀ θ ∈ T1. (11)

We assume that ω is known and write y(θ) as a real Fourier series,

y(θ) = a0 +
∑
k>0

ak cos(kθ) + bk sin(kθ), k ∈ N, with a0, ak, bk ∈ R4, (12)
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which is truncated to order N so that an approximation of 2N + 1 coefficients (a0, ak and bk with 0 < k 6 N ) can be
determined.

We select 2N + 1 points along T1 by

θj =
2πj

2N + 1
, 0 6 j 6 2N (13)

and impose the invariance condition upon this points. This gives

P(y(θj))− y(θj + ω) = 0, 0 6 j 6 2N, (14)

which is a system of 2N + 1 equations. Then the Newton method is used to correct the 2N + 1 unknown Fourier
coefficients.

Let F : R2N+1 → R2N+1 be a function that associates a set of Fourier coefficients (a0, a1, b1, a2, b2, . . . , aN , bN ) to
the 2N + 1 values at the left side of Eq. (14). Each iteration of the Newton method requires the numerical evaluation of
F in the Poincaré section Σ associated to the map P , as well as the evaluation of the differential DF of F , where DF is
a matrix composed of (2N + 1)× (2N + 1) blocks of matrices 4× 4 with elements (DF )jk given by:

∂F

∂ak
= DP(y(θj))I4 cos(kθj)− I4(cos(kθj + kω))

∂F

∂bk
= DP(y(θj))I4 sin(kθj)− I4(sin(kθj + kω)).

(15)

In Eq. (15) DP denotes the Jacobian of the flow corrected at Σ and I4 is the 4× 4 identity matrix.
As pointed out by Castellà and Jorba (2000), there are problems in solving the linear system that appears in the Newton

method due to the lack of unicity in the Fourier representation, given that the kernel of the matrix has dimension of at least
one. Such issue is solved by adding an additional linear condition to the system of equations. Is suffices to impose that
one of the components of y(θ) is zero when θ = 0. This leads to a non-square linear system that has a unique solution
and can be solved using, for example, Gaussian elimination with row pivoting.

2.3 Hyperbolic invariant manifolds of periodic orbits

Consider the Poincaré map P that has a fixed point w ∈ R4 with a pair of real eigenvalues, λ > 1 e 1/λ, and a
pair of complex conjugate eigenvalues, a ± ib, with |a ± ib| = 1. The unstable manifold Wu

w of w is tangent to the
subspace spanned by the eigenvector v ∈ R4 associated to λ. Similarly, the stable manifold W s

w of w is tangent to the
subspace spanned by the eigenvector v′ ∈ R4 associated to 1/λ. An approximation of Wu

w and W s
w is obtained through

the numerical globalization of the manifolds obtained from the linearisation of the system of equations around w.
The computation ofWu

w is as follows. Let y(ζ) be a parametric representation around the fixed pointw, withw = y(0)
and P(y(ζ)) ≈ y(λζ). We define ζmax such that the linear approximation is valid within a small tolerance ε, that is,
||w + ζv − P(w + ζ

λv)|| < ε, and compute ζmin = ζmax/λ.
Now, let s be the desired length up to which the curve Wu

w is to be computed and let σ be an auxiliar parameter along
Wu
w . Set a fixed step of arc-length ∆s. If ζmin 6 σ 6 ζmax, then we set ζ = σ and integrate the equations of motion to

get Pj(w+ ζv), which gives the n-th point along Wu
w . Else, if σ > ζmax, we find ζ such that ζmin 6 ζ = σ/λk 6 ζmax

and compute Pk(w + ζv), which gives n-th point along Wu
w .

To obtain the (n + 1)-th point, we increment σ by a given ∆σ. For every new point computed we check the distance
dn between the n-th point just computed and the previously computed point n− 1. If dn < ∆s, we keep increasing σ and
computing new points while

∑
n dn 6 s. Else if dn > ∆s, we reduce ∆σ, go back to the point n− 1 and recompute the

n-th point.
To compute W s

w one must use the reverse mapping, that is, P−1 obtained from φ−t. Alternatively, in the case of
the systems with time reversal symmetry, we can take advantage of this feature to immediately obtain W s

w from the data
computed for Wu

w .

2.4 Hyperbolic invariant manifolds of two-dimensional tori

Let f : Rn → Rn be a endomorphism that defines a discrete dynamical system ȳ = f(y) and suppose that f has a
compact invariant set T . Let w ∈ T be a given point and let (x,w) ∈ Rn × T , we write the linearisation around T as

xt+1 = Df(wt)xt, wt+1 = f(wt). (16)

Now, let us consider that T is a normally hyperbolic invariant torus with dimension r and that the function w = Tr →
T ∈ Rn gives the inclusion of that torus. If the dynamics in T is conjugated to a rigid rotation given by θ = θ + ω, with
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rotation vector ω ∈ Rr such that f(w(θ)) = w(θ + ω), then Eq. (16) can be rewritten as the following quasi-periodic
linear system

x̄ = A(θ)x, θ̄ = θ + ω, (17)

where A ≡ Df(w(θ)), with ω ·m 6= n, ∀m ∈ Zr\{0}, n ∈ Z.
We assume that Eq. (16) is a reducible skew product and compute the eigenfunctions ψ(θ) of A(θ), that are solutions

to A(θ)ψ(θ) = λTωψ(θ), where Tω is the operator [Tωψ](θ) = ψ(θ + ω).
If A is a reducible matrix with a simple transversal Lyapunov spectrum such that all the Lyapunov multipliers are

different and satisfy τ1 > τ2 > · · · > τn−r, τ1 6= 1, i = 1, · · · , n − r, we can employ a modified power method (see
Wysham and Meiss (2006) for more details) to obtain the eigenfunctions associated to the dominant eigenvalues of the
torus T . Indeed, if the multipliers are distinct and A is a real matrix, there is a set of real eigenvalues λi = ±τi and real
eigenfunctions ψi of A(θ)ψ(θ) = λTωψ(θ). So, we start with an arbitrary initial vector q(0) =

∑n
i=1 αiψi(θ0) that can

be written as a linear combination of the eigenfunctions ψi at some θ0, with α1 6= 0. Then we define iterative sequences

u(k) =
q(k)

‖ q(k) ‖
and q(k+1) = A(θ0 + kω)u(k), (18)

such that
∏k
j=0 ‖ q(j) ‖=‖ A(k)(θ0)q(0) ‖.

Let ψ1 be the eigenfunction with dominant eigenvalue, then

u(k) =
λk1

‖ A(θ0)q(0) ‖
[α1ψ1(θ0 + kω) +O(

λ2
λ1

)k]. (19)

Given that, by definition, u(k) is an unitary vector and ψ1 is a continuous function, the coefficient of ψ1 in Eq. (19)
must be limited. Thus, if we define sk = signal(λ)k, we have

u(k) → sk
ψ1(θ0 + kω)

‖ ψ1(θ0 + kω) ‖
(20)

which is the eigenvector we look for, except for the choice of the signal, and the Lyapunov multiplier is obtained by

τ1 = lim
k→∞

(

k∏
j=0

‖ qj ‖)1/k. (21)

Given that A is reducible, it has a dominant subspace. This implies that after a certain number of iterations the vector
u(k) will align with the dominant eigenfunction. So we can select a subsequence kj for which ‖ kjω ‖Zr→ 0 in order to
compute ψ1(θ0). The value of ψ1 at every iteration is approximated using polynomial interpolation in u(kj) through the
points θ + kjω along the curve. The iterative process stops when we obtain the desired accuracy in ψ1.

Let the endomorphism f be the Poincaré map P : R4 → R4, then an invariant torus with r = 2 corresponds to a one-
dimensional curve of P . Once we compute the dominant eigenfunctions at several angles along the curve, we integrate
initial conditions around the curve taken in an annular fundamental domain along the eigendirections and obtain a linear
approximation of the unstable manifold of the torus. In the case of the SCR3BP, the stable manifold can be immediately
obtained applying the symmetries of the system.

2.5 Continuation methods

Let w be a periodic solution of the Poincaré map P : R4 → R4 for a given value of a parameter ε such that F (w, ε) =
P(w, ε)−w = 0.

In order to investigate how the solution behaves when ε changes by ∆ε, we can write

P(w + ∆w, ε+ ∆ε) ' DwP(w, ε)∆w +DεP(w, ε)∆ε, (22)

where DwP is the Jacobian of the flow corrected at the Poincaré section with respect to the initial conditions and DεP is
obtained by numerical integration of the variational equations

u̇ = Duf · u +Dεf, (23)

with u(0) = 0, where u ∈ R6 is the Jacobian of the flow corrected at the section with respect to ε.
The most basic implementation of the continuation method (see Govaerts (1987) for more details) is to compute a

few solutions changing ε, taking a suitable step ∆ε, with the last computed solution as initial condition as an initial
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guess for the next one, and employing the Newton method to solve the linear system. Once some solutions are available,
extrapolation (by means of Lagrange Polynomials, for example) with respect to ε is used to get the next guess for values
of the variables. The step control must be performed based on the number of Newton iterates needed for the guess to
converge to the solution. However, the continuation method fails at the points of return of the solution curve with respect
to ε.

So, it is convenient to use the arc-length along the solution curve as the continuation parameter instead of the natural
parameter ε. Then, the extrapolation is performed with respect to the arc-length and the solution moves past the points of
return that could appear with respect to ε.

Another alternative is to employ the vector tangent to the curve of continued solutions to predict the next tentative
solution: consider the n× (n+ 1) matrix A = DF , where DF is the differential of F , and let AT = PTLU be the usual
LU decomposition of a non-square matrix. Then,

LTPy = [0 · · · 0 1]T = em+1 (24)

gives y, and the vector tangent to the solution curve is given by

v = σ
y

‖y‖
, (25)

where σ is +1, if det(P ) det(L) det(U) > 0, and −1 otherwise. Thus, a new guess for the modified Newton Method is
given by wnew = wold + εA, where ε is a small parameter to be chosen.

3. NUMERICAL INVESTIGATION: APPLICATIONS AND RESULTS

In general, the numerical approach to investigate stability domains starts with the selection of sets of initial conditions
in the phase space. Then these sets are integrated and an adequate algorithm is used to analyse if trajectories escape or
remain confined for a given (long) span of time. This sorting process provides a visualization of the general shape of the
practical stability region and allows the quantification of certain properties (see Simó (2006) and Simó and Vieiro (2007)
for examples in different systems, particularly in the SCR3BP).

The next step is trying to identify which are the dynamical structures that play a role in defining the detected domains.
To this end, we employ the procedures described in Section 2.

As an illustration of the employment of these techniques, in this paper we compute several invariant objects of the
SCR3BP with µSJ = 9.538754×10−4, which models the Sun-Jupiter system. We use FORTRAN for the implementation
of the procedures, and integrate the system of ordinary differential equations by means of a Taylor method with variable
order, using an ANSI C routine generated by Taylor 1.4.4 (Jorba and Zou (2005)) and modified as needed.

We define the Poincaré map Ph : Σh → Σh, where Σh = {(x, y, z, ẋ, ẏ, ż) ∈ R6|z = 0} ∩ {H = h}, with
h = (µ(1− µ)− C)/2, where C is known as the Jacobi constant and h is the corresponding energy.

We start showing examples of periodic orbits around L3. In Fig. (1) we show the projection onto position space of
periodic solutions in the center manifold of L3, known as vertical and planar Lyapunov orbits, for three different values
of C. Each vertical periodic orbit is a point of the map Ph corresponding to the h of the orbit. So, we find each of them
as points of Ph, as described in Section 2.1, and then integrate for a full period, that is, until the next intersection with the
Poincaré plane, to get the one-dimensional curves shown in Fig. (1).

Figure 1. Vertical (solid lines) and planar (dashed lines) Lyapunov periodic orbits around L3 for C = 1.86791577 (red),
C = 2.66050056 (green), and C = 2.96411566 (blue). The primaries and the equilibrium points of the system are

depicted with black points and xs, respectively.
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On the other hand, the planar Lyapunov orbits are completely contained in Ph, therefore we must define alternative
Poincaré sections in order to find them, using x = constant or y = constant instead of z = 0. Some possible choices are
x = xL3

= 1.00039745, where xL3
denotes the position of L3, or y = 0.

The vertical Lyapunov orbits, as well as the planar, form a uni-parametric family in the center manifold of L3. Using
C as the continuation parameter, in Fig. (2) we plot the two-dimensional surface formed by the vertical Lyapunov
family from the beginning of the family at C / C3 = 3.00019068, with C3 being the value of C at L3, until C ≈
8.25741135× 10−3. In that range of C, the orbits are unstable of center-saddle type in Ph.

Figure 2. Projection onto position space (left) and onto velocity space (right) of the surface formed by the vertical
Lyapunov family. The colours correspond to the values of C of the orbits.

Take C = 2.96411566 which gives h = −2.96316269. In Ph, the Lyapunov orbit is a point and its hyperbolic
manifolds are one-dimensional curves, as shown in Fig. (3). The projection onto the xy-plane (left frame of Fig. (3))
may misleadingly lead to conclusion that the stable and the unstable manifolds coincide. However, the projection onto
xyż-space (right frame of Fig. (3)) clearly shows that these manifolds have a small splitting.

Figure 3. xy projection (left) and xyż projection of the Poincaré section (z = 0, ż > 0) of the stable (green) and the
unstable (red) manifolds of the vertical Lyapunov orbit (black cross) around L3 for C = 2.96411566.

The stable and the unstable manifolds of a periodic orbit are two-dimensional in the complete six-dimensional phase
space. In fact, in the planar CR3BP (that can be viewed as a particular case of the SCR3BP) the center-saddle (planar)
Lyapunov orbits in the center manifold of L3 have hyperbolic manifolds that are locally homeomorphic to cylinders and
act as separatrices in the energy level. In that case, the three-dimensional surface formed by these hyperbolic manifolds
are codimension-1 in the phase space and account for the effective confinement of trajectories in a large vicinity of L5

(Gómez et al. (2001b)). On the other hand, in the SCR3BP, it is expected that higher dimensional invariant structures in
the center manifold of L3 replace the periodic orbits in playing a role in the definition of the practical stability boundaries
around L5, at least for trajectories with small vertical amplitude. Indeed, Simó et al. (2013a) observed that at least two
Cantorian families of two-dimensional hyperbolic tori are related to the practical stability boundaries for small values of
the mass parameter.

Figure (4) shows the Poincaré section of several two-dimensional hyperbolic tori of the Cantorian family that connects
the vertical and the planar Lyapunov orbits in the center manifold of L3 for C = 2.96411566. In Ph these tori correspond
to one-dimensional curves with different rotation number ρ which are found for fixed C, through the method described
in Section 2.2, starting from the vertical periodic orbit and employing continuation, with the rotation number as the
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continuation parameter, to reach the planar periodic orbit.

Figure 4. The red curves are the xy-projection of the Poincaré section of several two-dimensional tori with C =
2.96411566. The black cross is the projection of the Poincaré section of the vertical Lyapunov and the black curve is

the projection of the planar Lyapunov.

The two-dimensional tori in the center manifold of L3 form a Cantorian bi-parametric family in the phase space. The
vertical amplitude of these invariant solutions is maximal near the vertical Lyapunov orbit and decreases until they reach
the planar Lyapunov orbit. Figure (5) shows the projection onto position space of the full trajectories of two tori with
different rotation numbers. The curves with ρ = 4.15672285× 10−4 and ρ = 4.02411492× 10−4 were represented with
18 and 20 Fourier modes, respectively. Then, points along the curve were selected as initial conditions and integrated to
get the quasi-periodic trajectories shown in Fig. (5).

Figure 5. Projection onto position space of the trajectories of two tori with ρ = 4.15672285 × 10−4 (red) and ρ =
4.02411492× 10−4 (green) for C = 2.96411566. The vertical and the planar Lyapunov orbits are shown in black and in

blue, respectively.

The hyperbolic invariant manifolds of each torus of the family are three-dimensional objects in the six-dimensional
phase space. In Fig. (6) we plot the two-dimensional surface obtained by considering a Poincaré section of the manifolds
of the torus with ρ = 4.13260566243 × 10−4. To account for the third dimension, we use τ , a normalized parameter
related to the number of initial conditions taken along the eigendirections within an annular fundamental domain to
generate orbits on the manifolds. Negative values of τ correspond to the stable branches of the hyperbolic manifold,
while positive values of τ correspond to the unstable branches of the hyperbolic manifold.

The implemented algorithm, based on the method described in Section 2.4, stops the computation of each orbit along
the upper (lower) branch of the unstable manifold just after the trajectories cross the line that connects L5 (L4) to the
larger primary. For the example in Fig. (6), the average computation time of each unstable branch is of the order of 103

seconds using an Intel R© Core (TM) i7-2640M, 2,8GHz with 4 processors. Typically the running time decreases with C
and increases as ρ decreases. The stable manifolds are immediately obtained by symmetry from the computed unstable
manifolds.

Finally, let γ0 be the invariant curve that represents a two-dimensional torus T 2 in Ph. We define several curves γi,
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Figure 6. Stable and unstable manifolds of the two-dimensional hyperbolic torus with C = 2.96411566 and ρ =
4.13260566243 × 10−4, depicted as a black curve at τ = 0. Negative and positive values of τ correspond, respectively,

to the stable and the unstable branches of the hyperbolic manifold.

i = 1, ..., k, near γ0 and along its unstable eigendirection such that the distance from γi to γ0 is ri, where ri is a constant
number for each γi. Then, we select points in γi as initial conditions and integrate the trajectories for a given number of
Poincaré iterates to get orbits that are an approximation of the unstable manifold of T 2. Then we plot the n-th iteration of
all initial conditions of a single γi together. This is equivalent to computing a stroboscopic map with period equal to one
Poincaré iteration of the orbit. Figure 7 shows such a map for some selected pairs of (i, n). We can see how the unstable
manifold departs from T 2 and deforms as n increases.

Figure 7. Unstable manifold of the two-dimensional invariant torus with C = 2.96411566 and ρ = 4.13260566243 ×
10−4. T 2 stands for the curve γ0 and the curves labeled with ri, nn correspond to the n-th iteration of the initial conditions

taken on γi.

4. FINAL REMARKS

We described methods to compute invariant objects and applied them to the study of the SCR3BP, using the mass
parameter corresponding to the Sun-Jupiter system. Specifically, we computed vertical and planar Lyapunov orbits of
center-center-saddle type around L3 and showed that the stable and unstable invariant manifolds of the vertical Lyapunov
orbits split. Additionally, we computed two-dimensional hyperbolic tori in the center manifold of L3 and obtained the
stable and unstable manifolds of a torus for a pair of Jacobi constant and rotation number.

Once the procedures and their implementations are validated they can be used to perform a systematic investigation
of the objects that determine effective stability boundaries of the Sun-Jupiter system. For this, one has to perform cor-
respondence checks between numerically constructed invariant structures and approximated solutions obtained from the
analysis of capture-escape transitions.
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