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Abstract. The image reconstruction from the Electrical Impedance Tomography (EIT) can be approached as an optimiza-
tion problem, in which is desired to minimize the Euclidean distance between the potential values measured in the cross
section of the body and the calculated values, for every pattern of current applied, through the modelling of the problem
by the Finite Elements Method (FEM). It’s known, a priori, that this formulation is ill-posed, which increases dependence
of the EIT to the reconstruction algorithm, which must has any regularization technique to improve the conditioning of
the problem. Therefore, this project proposes the use of an Multi-Objective Optimization algorithm in order to find the set
of optimal solutions to the problem, aiming the minimization both the Euclidean distance and a regularization parameter.

Keywords: electrical impedance tomography, multi-objective optimization, simulated annealing, regularization tech-
niques.

1. INTRODUCTION

Since the early 80s, a new tomographic technique is being developed: the Electrical Impedance Tomography (EIT).
It consists on the non-invasive obtainment of images of the cross section of a solid body based on the estimative of the
electrical conductivity (or resistivity) distribution inside a domain (Henderson and Webster, 1978; Price, 1979; Barber and
Brown, 1984). Its most common use is in monitoring and medical diagnostics (Barber and Brown, 1984). In particular,
imaging of lung stands out due to its size and high resistivity contrasts, features that make the image estimation using this
technique easier (Frerichs, 2000).

EIT image reconstruction is often approached as a problem of non-linear non-convex optimization. Under this ap-
proach, the problem is converted in the problem of minimizing the difference between physical measures and simulations
of a parametrized model (Herrera, 2007; Mello et al., 2008; Martins et al., 2012). As the underlying optimization prob-
lem is often ill-conditioned, additional regularization terms are added to its objective function in order to stabilize the
solution (Vauhkonen et al., 1998). The a priori determination of the weight of the regularizing terms is often difficult. In
this context, multi-objective optimization arises as a promising technique, allowing for the determination of a family of
possible solutions with different balances between the regularizing terms and the original objective.

2. ELECTRICAL IMPEDANCE TOMOGRAPHY

Imaging techniques are able to obtain images of the cross section of a solid body through the association between the
information(obtained by a series of measures in different directions of the section analyzed) and a computer which, once
coupled to the hardware used to obtain these data, reconstructs the image according to a predetermined mathematical
algorithm (Bates et al., 1983).
The Electrical Impedance Tomography (EIT) is presented as an alternative technique to the traditional tomography, since
the algorithms that have been developed use the information coming from the voltage values measured by electrodes
placed around the section analyzed to reconstruct its internal image. The reconstructions obtained by this method have
a low resolution when compared to other techniques. However, even not showing resolution results as satisfactory as
other techniques, the EIT method stands out, as its tomograph doesn’t expose the body region in analysis to any kind of
radiation, is portable and low cost, making feasible its clinical application Cheney et al. (1990); Browne (2001).
The mathematical approach used to solve the estimation problem can be sectioned in two parts: the resolution of the direct
problem, which consists in modeling the electrical potentials from an explicit conductivity function (our resistivity) of the
domain; and the resolution of the inverse problem, which consists in calculating the conductivity(or resistivity) distribu-
tion inside de domain using the voltage values measured in the surroundings of the section (Murai and Kagawa, 1985;
Kallman and Berryman, 1992). It is known, in advance, that the inverse problem is ill-posed (Sylvester and Uhlmann,
1987; Glisser et al., 1990), increasing the dependency of the EIT reconstruction to the algorithm used, which must pos-
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sess some regularization technique to improve the conditioning of the problem (Tikhonov, 1991; Adler and Guardo, 1996;
West et al., 2001).

2.1 Formulation of the Finite Elements Method

The electrical current flow, under a quasi-static approximation, is described by the following elliptic equation:

∇ (σ∇φ) = 0 (1)

where σ is the film conductivity and φ is the electrical potential. The typical forward problem in EIT is given the
conductivity distribution σ and the current J injected through boundary electrodes, find the potential distribution φ within
Ω and in particular the resulting potentials at the measurement electrodes φm. At the boundary, currents are injected
through electrodes; thus the current density Jl injected through the l-th electrode is given by (current pattern)

σ
∂φ

∂n̂
= Jl (2)

and the current density is zero elsewhere at the boundary Brown and Seagar (1987).
The exact analytical solutions to the Eq. (1) aren’t well known.One way to obtain approximate solutions is the Finite

Elements Method (FEM) Herrera (2007). The method consists in decomposing the domain into discrete elements and
seek a solution φ̃ using a linear approximation to the potential function φ. Applying continuity conditions and defining a
global total error metric to be minimized, it is possible to convert the Eq. (1) into a linear system:

K(σ)Φ = C (3)

Where: K(σ) ∈ Rs×s is the Conductivity Matrix related to a particular conductance distribution σp; Φ is a vector of
nodal potentials; C is a vector of nodal currents (null for all nodes, except the electrodes); and s is the number of nodes
in the system.

3. THE INVERSE PROBLEM AS AN OPTIMIZATION PROBLEM

The EIT’s inverse problem consists in, given the domain Ω, the current J injected into the electrodes and the potential
φm in the electrodes, determining the conductivity distribution σ.
Once there are known efficient methods (as the FEM described above) to solve de direct problem, it is possible to approach
the inverse problem as an optimization problem, in which the variables are a parameterization of the conductivity in the
domain (for example, segmenting the domain in intervals of constant conductivity and assigning a parameter to each
conductivity values) and the function to be optimized is a measure of how much the solution of the direct problem
(calculated from the conductivity produced by the optimization variables) corresponds to the observed data.
Thus, a possible objective function is the Euclidean Distance E(σ) between the values of the potentials (φim) measured
on the contour and calculated values (φic(σ)) to all current standards applied.
We have, then, the objective function given by:

E(σ) =

√∑
i

|φim − φic(σ)|2 (4)

As stated above, the values of φic(σ) can be calculated by the FEM by solving the linear systems as in a Eq. (3) for
each pattern of current applied, and taking the potentials at the electrodes as φic(σ) (the values of the potentials internal to
the domain can be neglected).
It has been appointed by Mello et al. (2008) that the solution of this optimization problem through gradient methods, such
as the sequential linear programming used, is inherently difficult since the original problem is ill-posed, which leads to
uncertainties in the calculation of the objective function. These are naturally amplified in the calculation of the gradients.
In this context, the Simulated Annealing (Herrera, 2007) applied to EIT becomes interesting, because it doesn’t require
evaluation of derivatives of the objective function.

4. SIMULATED ANNEALING

The Simulated Annealing (SA) (Kirkpatrick et al., 1983) is the heuristic probabilistic method chosen to deal with the
EIT problem, once it has the ability to escape from local minimums which frequently occur in this problem.
The technique is based on an algorithm that simulates the process of recrystallization in metal atoms during the anneal-
ing. The term "annealing" refers to the thermal cooling that begins with the liquefaction of a crystal at high temperature,
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followed by a slow and gradual reduction until the solidification point is reached, at which time the system reaches a
"minimum energy" state. Thus, the atoms migrate naturally to positions that minimize the total energy of the system, even
if they have to go through high-energy intermediate settings.
The SA combines de advantages of interactive improvement techniques with randomization techniques, resulting in a
powerful tool for optimization, which has been used in several problems.
A way to apply the Simulated Annealing to the image reconstruction of Electrical Impedance Tomography is to use the
suggested in section 3.: formulate the EIT inverse problem as an optimization problem and solve it.

5. MULTI-OBJECTIVE OPTIMIZATION

The term "optimization" refers to the process of finding the best solution to a problem, given a number of constraints
relating to it. Considering a situation in which you want to analyze only one single objective, the optimization longs to
find the best available solution (called global optimum), or at least a good approximation of the same (Coello, 2006). It is
called "mono-objective optimization" the optimization process in which you want to solve only one objective function. In
this context, it appears that the Simulated Annealing can be applied to this category due to its characteristics of escaping
from local minima, tending to find the global optimum (or near-global).
However, most of the real problems, especially those aimed to the development of engineering models, are placed in
order to satisfy more than one objective function, usually conflicting (Suppapitnarm et al., 2000). In this case, there is
no single solution that satisfies all objectives simultaneously (Jones et al., 2002). This optimization category is called
"multi-objective optimization".

5.1 Resolution of Multi-Objective Problems

The multi-objective optimization can be formally established according to the following formulation (Bandyopadhyay
et al., 2008): Find the vector x∗ = [x∗1, x

∗
2, ..., x

∗
n]T of decision variables that optimizes simultaneously the M objective

values {f1(x), f2(x), ..., fM (x)}, while satisfying the constraints, if any.
There are several ways to solve multi-objective problems. Traditionally, their solution is the conversion of all objectives
in one single objective function. From this point, we seek to find the solution that maximizes or minimizes it, while main-
taining the physical constraints of the system (or process). Thus, the optimization problem results in one single value,
reflecting the harmony among all objectives. The problem with this solution is to find a formulation that can transmit the
desired harmony to the function ((Ngatchou et al., 2005)).
The conversion of multiple objectives into one single-objective function is usually done by aggregating all functions in a
weighted function, or simply choosing one of the objectives and transforming all other ones in restrictions. However, this
approach has serious limitations. The first is the need of knowing a priori the relative importance of each objective, as well
as the limits of those that are converted into constraints. We also emphasize that this aggregation, in both formulations
above, generate only one solution. In addition, there is the difficulty in evaluating the compromise among the objectives.
Finally, there’s a risk of not reaching any solution if the search space isn’t convex ((Ngatchou et al., 2005)).
More recently, the use of meta-heuristics became an option quickly accepted by researchers from different disciplines
((Coello, 2006)). Its increasing popularity is mainly due to its ability to find multiple solutions in a single run, work
without derivatives, converge quickly to the Pareto optimal solutions with a high accuracy level, deal with combinatorial
problems and easy discontinuity of functions (Ngatchou et al. (2005)).
In this context, it’s necessary to define another important concept: Pareto dominance. In a maximization problem, it’s said
that a solution ~xi dominates ~xj if ∀k ∈ 1, 2, ...,M, fk(~xi) ≥ fk( ~xj) and ∃k ∈ 1, 2, ...,M, such that fk(~xi) > fk( ~xj)
((Suppapitnarm et al., 2000)). Thus, the Pareto dominance is used to compare and classify the decision vectors, where
~xi dominate ~xj in the Pareto sense means that ~F (~xi) is better than ~F ( ~xj) for all objectives, and that there is at least one
objective for which ~F (~xi) is strictly better than ~F ( ~xj) ((Ngatchou et al., 2005)).
A solution ~y is considered a Pareto optimal if and only if there is no other solution that dominates it. In other words,
the solution ~y can’t be improved in an objective without at least one of the other objectives is adversely affected. The
corresponding objective vector ~F (~y) is called dominant Pareto vector, or non-inferior, or non-dominated. The set of
Pareto optimal solutions is called the Pareto optimal set. The corresponding objective vectors are meant to be the Pareto
front (Ngatchou et al., 2005). Figure (1) shows a representation of the Pareto front in a bi-objective problem which we
want to minimize f1 and f2.
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Figure 1: Pareto Front to a Bi-objective Minimization Problem. Adapted from (Ngatchou et al., 2005)

5.2 Multi-Objective Optimization Algorithms by Simulated Annealing

An area of meta-heuristics widely explored by researchers is the algorithms based on Simulated Annealing. There are
several different formulations that use the SA to find the Pareto optimal.
As a pioneer in this area, the algorithm Multi-Objective Simulated Annealing (MOSA) developed by Engrand (1997)can
be mentioned. In this algorithm, a "composition" of the objective function G is created between each objective and is
defined as:

G =
M∑
i=1

lnfi (5)

Where f1, ..., fM are M objectives to be minimized. At each iteration, n, the values of f1, ..., fM are calculated
from values of control variables stored in Xn, and then replaced in Eq. (5) to produce G(Xn). Random perturbations
are then applied to each element of Xn to obtain Xn+1, for which G(Xn+1) is calculated. As the mono-optimization,
the acceptance criteria with the following probability P (calculated using Eq. (6) is then applied between successive
operations.

P = e(
−(G(Xn+1)−G(Xn))

T ) (6)

During the course, an archive of non-dominated solutions is maintained. All accepted solutions are candidates for
archiving: if a candidate solution dominates any member of the archive, those members are removed and the new solution
is added; if the new solution is dominated by any member of the archive, it isn’t archived; if the solution doesn’t dominate
anyone nor is dominated by any member of the file, it’s added to it. This technique is outlined in Fig. (2), which shows a
minimization bi-objective problem.

However, some aspects of this algorithm are unsatisfactory. First, the way in which the composition of the objectives
is formulated in Eq. (5) requires considerable caution to ensure that typical values of

fi(Xn+1)

fi(Xn) are similar for all objectives
(otherwise, the search will inevitably favor some objectives over others). Secondly, we have that any movement in which
at least one objective is decreased is, potentially, a movement by the search of a non-dominated solution. The probability
of acceptance of a movement depends on the relative changes of all objectives (and the temperature of the current system)
and, so, there is no guarantee that this movement is going to be accepted. If it isn’t, it will not be archived, which is clearly
undesirable ((Suppapitnarm et al., 2000)).
In a modification of the original MOSA, Bandyopadhyay et al. (2008) found very interesting results in the development
of a new formulation: the AMOSA (Archived Multi-Objective Simulated Annealing). The AMOSA algorithm is based
on the Simulated Annealing principle. Thus, at a given temperature, T , the probability of a new state s be accepted is
equal to:

pqs =
1

1 + e
−(E(q,T ))−(E(s,T ))

T

(7)

The AMOSA incorporates the concept of archive, where the non-dominated solutions are stored until then. In this
approach, the file size is limited by two boundaries: the hard limit, denominated by HL; and the soft limit, called SL.
Another technique used is to group the solutions in the archive, in order to explicitly compel the diversity of non-dominated

ISSN 2176-5480

6258



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

solutions ((Bandyopadhyay et al., 2008)).
Other concept used by AMOSA is the amount of domination to calculate the acceptance probability of a new solution.
Given two solutions a and b, the amount of domination is defined as ∆doma,b =

∏M
i=1,fi(a)6=fi(b)

(||fi(a) − fi(b)||Ri),
whereM is the number of objectives andRi is the range of the ith objective ((Bandyopadhyay et al., 2008)). This concept
can be visualized in Fig. (2).

Figure 2: Total Amount of Domination between two solutions A and B = shaded area. Adapted from ((Bandyopadhyay
et al., 2008))

6. REGULARIZATION TECHNIQUES

It is known that image reconstruction by EIT generates the formulation of an inverse problem ill-posed. The most
common way to address this question is through the regularization of it, using a priori information of the object to be
studied. In EIT, this information can be anatomical data obtained, for example, by magnetic resonance imaging (MRI),
along with known resistivity of different tissues and also the noise level of the measurement system ((Vauhkonen et al.,
1998)). Some successful implementations of this information can be found in ((Woo et al., 1992) and (Eyuboglu et al.,
1994)). Note, therefore, the importance of choosing the appropriate regularization technique.

6.1 Gradient Norm Method Regularization

6.1.1 Definition

A possible strategy to be used is the development of the regularization function σNG
R by the Norm of the Gradient

Method ((Mojabi and LoVetri, 2009)). This technique penalizes solutions with in benefit of smoother solutions. The
formulation of the regularization term is as follows:

σNG
R =

∫
Ω

||∇σ||2dA (8)

Where Ω is the domain,∇ denotes the spacial gradient operator and σ is the conductivity distribution.

6.1.2 Application of Norm Gradient Regularization to the TIE Problem

In this case, the multi-objective optimization should be formulated from two objective functions: Eq. (4) and Eq. (8),
to be simultaneously minimized.
On a discrete FEM domain, the impedance distribution σ(x) is approximated by linear shape functions such that σ(x) =
σT · Ψ(x), where σ is the vector of conductivity parameters and Ψ(x) is the vector of base functions. As such, the

ISSN 2176-5480

6259



A. V. Fernandes, T. C. Martins
Multi-objective optimization by Simulated Annealing Applied to Image Reconstruction by Electrical Impedance Tomography

Figure 3: Cucumber phantom that produced the EIT experimental data

Figure 4: Mesh used for image reconstruction

regularising term σNG
R can be developed as follows:

σNG
R =

∫
Ω

∇σ2dA =

∫
Ω

∇
(
σT ·Ψ

)2
dA =

∫
Ω

(σT · ∇Ψ) · (∇Ψ · σT )dA =

∫
Ω

σT · (∇Ψ⊗∇Ψ) · σdA (9)

We can then define by B the matrix in which:

σNG
R = σT ·B · σ (10)

The development of the regularization part depends then of the calculation of the elements bij of the matrix Bnxn,
that are, by definition, equal to:

bij =

∫
Ω

∇ψi∇ψjdA (11)

If the shape functions for the conductivity distribution Ψ(x) are the same used to interpolate the electric potential φ,
then the Bnxn matrix is very similar to the K matrix from the FEM model in eq. (3).

7. RESULTS

The experiment in (Martins et al., 2012) was replicated with the cucumber phantom in Figure 3. The FEM mesh - both
for impedance and potential discretization - is depicted in Fig. 4. The AMOSA algorithm was implemented with objective
functions in Eq. (4) and Eq. (8). It was set to keep at least 15 solutions in the Pareto Front. A graphic representation of
the final Pareto Front can be seen in Fig. (5).

The solutions on the Pareto Front can be observed in Fig. (6).
The results of this reconstructions are satisfactory. It can be noticed that this solutions correspond to the higher values

of the regularization function (Eq. (8) and, because of this, provide sharper images.
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Figure 5: Pareto Front due to the implementation of the bi-objective optimization of the EIT by AMOSA algorithm.

For solutions on the Pareto front, as the value of Eq. (4) increases, the value of Eq. (8) decreases, as it was expected
(As all solutions are non-dominating with respect to each other).
The image presents more sharp reconstruction artifacts for lower regularization values. On the other hand, for higher
regularization values, the exact position of the cucumber slices become more uncertain.

8. CONCLUSION

In this paper was proposed the use of multi-objective optimization to solve the regularized EIT reconstruction problem,
so the appropriate amount of regularization can be selected after the reconstruction process is done. An implementation
of the AMOSA algorithm, based on Simulated Annealing, was used to perform the multi-objective optimization. Both
Euclidean Distance from experimental Data and Norm of the Gradient objective functions were optimized, producing a
Pareto front of solutions. As expected, solutions obtained ranged from low regularized, with sharp artifacts to smooth
highly regularized solutions, where exact position of the phantom objects is uncertain.
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