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Abstract. The enthalpy-porosity technique for modeling convection-diffusion phase change with application to melting 
a pure gallium is presented in this work. To solve this classical thermal problem, it was considered a bidimensional 
two-phase numerical model for convection-dominated melting and solidification. Based on a fixed grid, a 
computational algorithm was implemented in C++. In this work the thermal properties of the pure gallium was 
considered constant. Adopting a fully implicit control volume, the finite volume technique was used to solve the energy, 
mass conservation and momentum equations. The SIMPLE algorithm is employed to determine the velocity and 
pressure field. The upwind scheme was introduced for the convection term. The liquid mass fraction is determined 
iteratively from the solution of the enthalpy equation. Based on the results obtained in this work the thermal model will 
be improved to simulate a Gas Tungsten Arc Welding process (GTAW). Inverse problems will be applied to estimate 
the heat flux supply to the workpiece during the welding process, and a tridimensional numerical model, based on the 
enthalpy-porosity technique, will be used to calculate the width and depth of the weld bead.  
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1. INTRODUCTION  

 
 The heat transfer problem with phase change attracts a considerable attention of mechanical engineering 
researchers due to its relevance and application in several industrial processes as casting and welding of metallic 
materials. One of the most widely used welding processes is the GTAW (Gas Tungsten Arc Welding). This process is 
used with success for stainless steels and non-ferrous materials welding. The welding of workpieces is obtained through 
a voltaic arc, which is a very intense heat source. The thermal behavior analysis of the physical problem that occurs 
during the welding process is crucial to understand, for example, the formation of the width and depth of the weld, 
microstructure changes and residual tensions. However, the heat flux supplied to the workpiece is unknown and its 
determination in heat transfer represents an inverse problem.  
 The difficulty to solve the thermal problem with phase change is related to define a numerical and powerful 
mathematical methodology to provide with accuracy the solid-liquid phase change according to the model and its 
physical properties.  
 The phase change phenomenon involves a system of nonlinear partial differential equations and numerical 
implementation of moving boundary conditions. Several techniques are available to solve these kinds of problems and a 
comprehensive review can be found in Crank et al (1984). Basically, the methodologies developed are classified in 
three groups according to Brent et al. (1988): empirical, classical and enthalpy technique. 
 Among the available methodologies, the enthalpy technique consists of an alternative approach to classical and 
empirical method. It allows the use of standard solutions for mass flow and energy with a fixed grid and it does not 
require mathematical manipulations during the solid-liquid or liquid-solid transition. Basically, the method calculates 
the latent heat in the energy equation interactively, considering the temperature and the latent nodal heat for each cell of 
the domain. This technique is quite cited in the literature and it is recognized as satisfactory by several authors, such as: 
Alexiades and Solomon (1993), Meyer (1978) and Tayler (1975). A problem identified in this kind of technique is to fix 
the condition of zero velocity when a solid region becomes liquid or vice versa. A suitable approach was presented by 
Gartling (1980), in which was introduced the concept of mass fraction. In this case, the viscosity of a cell is driven to a 
very large value when the mass fraction of liquid tends to zero. This increased viscosity provides the necessary coupling 
between physical state and fluid flow equations, making the velocity in the cells tends to zero. 
 Voller and Markatos (1985) examined several methods to deal with the condition of zero velocity in fixed grids 
and proposed an alternative approach quite similar to that one used for Gartling (1980). According to the authors, the 
computational cells undergoing phase change are modeled as pseudo porous media and the mass fraction varies from 0, 
(fully solid medium) to 1 (fully liquid medium). From this concept emerged the enthalpy-porosity technique that is the 
base of the present work.  
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 In this sense, the objective of this work is to develop a technique to obtain the location of melting front, velocity 
fields and temperature of a metal during phase change. Based on a fixed grid, the enthalpy-porosity technique treats as a 
porous media the whole field of cells which are located in the solid-liquid interface. In relation to the cells that are fully 
located in solid regions, the mass fraction suppresses velocity vectors in momentum equations. The benefit of this 
methodology is to simulate simultaneously solid and liquid regions considering energy, mass and momentum equations.  
 
2. THERMAL PROBLEM 

  
The objective of this work is initially to understand the difficulties related to the algorithm development and 

simulation of this kind of problem to further apply the knowledge in the study of three-dimensional problems of 
engineering, such as those related to welding processes. In this sense, a classical thermal problem involving melting of 
pure gallium in a rectangular cavity was studied in this work. This problem was chosen because the material thermo-
physical properties are well known and in literature there are several scientific information to help in the solution of the 
thermal problem, such as: Voller and Markatos (1985), Voller and Prakash (1987), Kim et al. (2001), among others. 

Gallium has a melting point close to the room temperature in tropical regions (29,78°C) and comprehensive and 
accurate experimental results about its melting or freezing front can be found in scientific literature. Such information 
are going to be used to validate de thermal model presented in this work. 

 

 
 

Figure 1. Melting of pure gallium at room temperature (infoescola, 2012). 
 

Figure 2 shows the physical model and boundary conditions. 
 

 
 
 

Figure 2. Physical model and boundary conditions. 
 

The model represents basically a two-dimensional thermal problem in which is prescribed temperature in the left 
and right walls, and thermal insulation in the top and bottom walls. 

The dimensions of the thermal problem and gallium thermal properties are presented in Tab. 1. 
 
 
 
 
 

Top wall insulated 

Bottom wall insulated 

Heated wall Cold wall 

Solid gallium 

Liquid 

 l 
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Table 1. Properties of pure Gallium and input data of the simulation. 

 
Parameters Symbol Value Unit 

Density (Liquid)   6093 kg 3m  

Reference density ref  6095 kg 3m  

Specific heat c 381,5 J 1 1kg K   

Thermal conductivity k 32 W 1 1m K   
Volumetric thermal expansion 

coefficient of liquid   1,2∙10-4  

Latent heat of fusion L 80160 J 1kg  

Melting point mT  29,78 ºC 

Reference temperature refT  29,78 ºC 

Temperature of the right side hT  38 ºC 

Temperature of the left face cT  28,3 ºC 
Cavity length l 0,0889 m 
Cavity Height H 0,0635 m 

Acceleration due to gravity g 9,8 m 2s  
Rayleigh number Ra 7∙105  

Stefan number St 0,046  
Prandtl number Pr 0,0216  
Mass fraction f 0  to 1  

 
 
2.1 Governing Equations 

 
The mathematical formulation was presented by Brent et al. (1988) and it is based on the enthalpy-porosity 

technique. The model is bidimensional, incompressible, laminar and the thermo-physical properties are considered 
constant. Eq. (1) to (4) presents the mass conservations, momentum and energy equations: 
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where u and v are the velocity vectors, T is the temperature, P pressure vector, x and y are the coordinate axis and t is 
the time.  
 

It is proposed in this work to treat each finite volume as a porous element, with porosity represented trough the 
mass fraction. Thus, when a finite volume changes from solid to liquid the mass fraction gradually changes from zero to 
one. The source terms in momentum equations ( uS  and vS ) suppress the velocity vector when a finite volume is solid 

ISSN 2176-5480

5980



MIRANDA, M.C and CARVALHO, S.R.  
Numerical and thermal analysis of the enthalpy-porosity technique for future application in metal welding processes. 
 

and gradually, when mass fraction varies from 0 to 1, velocity field arises in liquid region. The source term S takes the 
appropriate form of Carman-Kozeny  (Eq. 5) as presented by Voller and Prakash (1987). 
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where C is a constant large enough to dissipate cell velocity but not so large to cause numerical instability, V is the 
velocity vector and b is merely a computational constant introduced to avoid division by zero.  
 
2.2 Numerical Model  

 

Based on fully implicit scheme, finite volume technique was used to solve mass conservation, momentum and 
energy equations. The SIMPLE algorithm is employed to determine the velocity and pressure field. The upwind scheme 
was introduced to solve the convection terms. The liquid mass fraction is determined iteratively from the solution of the 
energy equation. It is based on the numerical discretization of energy equation as presented in Eq. (6) to (15). 
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Table 2 shows the coefficients of Eq. (6) after discretization. 
 

Table 2. Coefficient values in Eq 6. 
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where   is a constant useful in upwind scheme, according to the value the finite volume it values ½ or - ½. 
 

According to Voller and Brent (1989) the mass fraction “f” is iteratively determined from the solution of energy 
equation. The author presents three approaches to iteratively estimate the mass fraction. This study applies one of the 
techniques proposed by the author, in which the mass fraction vector is estimated at each instant of time. In this case, 
the mass fraction is calculated using Eq. (7). 
 

1 .n n
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where “λ” is a sub-relaxation coefficient to be adjusted (0 < λ <1), “n” is the iteration and “cor” is the correction for 

1n
pf  . Furthermore, the following relations are valid: 
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To obtain the correction value “cor” in the Eq. (7) Voller and Brent (1989) propose that: 
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where 
 

Terms = t t
e ea T  + tt

wwTa  + tt
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NNTa         (11) 
 

When occurs phase change in a given cell the term tt
pT   in Eq.(10) assumes the value mT , namely melting 

temperature. Then:  
 

mpTa + Terms = t
ppoTa + cor

c
Laf

c
Lab po

n
ppop  1       (12) 

 
Subtracting Eq. (12) of Eq. (10) follows that 
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Finally, substituting Eq. (14) in Eq. (7), the mass fraction can be interactively estimated according to the following 

equation 
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Figure 3 shows the computational algorithm to solve partial differential equations presented in this work.  

 

 
 

Figure 3. Computational algorithm 
 

The convergence criteria of the numerical solution were based on both mass and energy conservation, reflecting the 
convergence of the flow and temperature field, respectively.  
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3. RESULTS 

 
Figure 4 shows the convergence of the thermal model according to the refinement of the numerical mesh. In this 

case it was analyzed the temperature and mass fraction along the cavity length "l" at the coordinate y = 0.03 m at the 
time of 3 min. 

 

 
 

Figure 4. Convergence analysis of the thermal problem: a) Temperature and b) mass fraction along the cavity 
length "l" at the coordinate y = 0.03 m at the time of 3 min 

 
Analyzing Figure 4 it is noted that from meshes with 30 x 20 and 35 x 25 nodes the results are quite similar. 

Therefore, in this work it was adopted the mesh with 35 x 25 nodes in the solution of the thermal problem.  
The position of the melt front, temperature fields, mass fraction distribution and streamlines at 3 minutes are show 

in Fig. 5.  As noted by Brent et al. (1988) and Voller and Brent (1989) the melt front is virtually planar after 3 minutes 
as the natural convection field has just begun to develop. 

 
 

Figure 5. Melt front, temperature field, mass fraction distribution and streamlines after 3 minutes 
 
Figures 6 to 8 show a comparison between streamlines at 6, 10, 19 minutes. The results obtained in this work 

were compared to that one presented by Kim et al. (2001). It was observed that the melt front calculated in this work 
remains virtually planar during the simulation time and it tends to move more quickly when compared to literature. 
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                                                     a)                                                                                          b) 

 
Figure 6. Comparison between streamlines at 6 minutes: a) Kin et al. (2001) and b) Present work 

 

 
                                                     a)                                                                                          b) 

 
Figure 7. Comparison between streamlines at 10 minutes: a) Kin et al. (2001) and b) Present work 

 

 
                                                     a)                                                                                          b) 

 
Figure 8. Comparison between streamlines at 19 minutes: a) Kin et al. (2001) and b) Present work 

 
Although the results calculated in this work are not in agreement with literature, the morphology of the melt front is 

as expected: fluid rising at the heated wall travels across the cavity an impinges on the upper section of the solid front, 
thereby resulting in a melting area back beyond the mean position of the front. 

 
4. CONCLUSION  

 
The aim of this work was to develop a numerical model to be applied in the study of thermal and fluid-dynamic 

fields developed during metal heating with phase change. A studied based on the thermal problem with phase-change of 
gallium in a bidimensional cavity was presented to evaluate the algorithm and the numerical methodology implemented 
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in this work. The future goal is to apply the numerical model and the experience gained in the study of thermal fields 
developed during a GTAW process.   

According to a Cartesian coordinate system a mathematical model was developed. It was based on energy, mass 
fraction and Navier-Stokes equations. The direct problem was solved with an irregular fixed grid by Finite Volume 
Method. It was used the enthalpy-porosity technique for simulate the phase change problem. In the numerical solution it 
was used the upwind scheme for the convective terms and the SIMPLE method was applied to solve Navier-Stokes 
equations. Simulations were performed to analyze stability, convergence and results provided from the numerical 
model.  

The results calculated in this work are not in agreement with literature. Therefore the next step is to correct the 
numerical model. As suggested by Brent et al. (1988) and Voller and Brent (1989) the upwind scheme will be removed 
and Patankar’s Power Low Scheme for the convective terms will be implemented. After validating the computational 
algorithm it is proposed to expand the thermal model to a 3D code and then apply it to the thermal analysis of welding 
processes. 
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