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Abstract. Boundary layer flow over concave wall is subject to centrifugal instabilities, giving rise to primary instabilities
that can seed longitudinal vortices, known as Görtler Vortices. Initially these vortices grow linearly and, when they reach
a small amplitude, they begin to develop non-linearly until the saturation regime. During the non-linear phase, the vortices
change the streamwise velocity distribution. The new velocity distribution has inflections in the spanwise and wall-normal
directions. The inflections are susceptible to instabilities that give rise to secondary instabilities. In Görtler flow, the
secondary instabilities can be sinuous and varicose modes. In this study, a Direct Numerical Simulation of this scenario
is presented. Only the varicose mode is taken into account. The numerical scheme is based on high-order method: a
4th order Runge-Kutta scheme is adopted for time integration; compact high-order finite difference schemes are used to
discretize the spatial derivatives in the streamwise and the wall-normal directions; a spectral method, based on Fourier
transform is adopted to discretize the spanwise derivatives. The method is parallelized through domain decomposition
in the streamwise direction adopting MPI libraries. The present study aims to control the transition scenario by using
uniform suction. The results show that uniform suction is not effective in postponing the transition to turbulence. The
energy of the unsteady modes reaches lower values with uniform suction, but the transition to turbulence remains almost
in the same place.
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1. INTRODUCTION

Turbulent flows are common in practical applications. There are a large number of situations in which transition to
turbulence is important. That is the case for the flow over low Reynolds number turbine blades and laminar flow airfoils.
The understanding of how transition takes place can help to predict and control transition to turbulence. Over recent years
the body of knowledge on laminar flow stability and transition has increased due to the development of new experimental
and numerical techniques as well as to advances in applied mathematical theories. However, there are many transition
scenarios for which a physical explanation is still unknown, and transition location prediction remains a challenge in many
engineering applications.

Many flows exhibit the following scenario: the flow starts out in an unstable laminar state; then a linear instability
develops, and grows up to the point where nonlinear interactions finally lead to turbulence or another flow distribution
different from the initial one. In many applications, it might be very interesting to delay this transition toward turbulence
and, thus, to maintain the flow laminar. Consequently, a control system to control those instabilities is an initial objective.

Stationary streamwise vortices are found in the boundary layer over a concave wall – competition between centrifugal
and pressure forces creates an instability leading to Görtler vortices (Hall (1982), Hall (1983), Floryan and Saric (1982),
Swearingen and Blackwelder (1987), Saric (1994), Bottaro and Klingmann (1996)). The centrifugal instability mechanism
is responsible for the development of counter-rotating vortices aligned in the streamwise direction, known as Görtler
vortices. These vortices pump low momentum fluid away from the wall and high momentum fluid toward the wall
forming upwash and downwash regions, respectively. This macroscopic redistribution of mass results in the development
of mushroom type structures with strong inflectional velocity profiles in the wall-normal and streamwise directions. These
inflectional velocity profiles are susceptible to high frequency secondary instability further downstream. Reviews on
Görtler vortices with detailed description and theoretical background have been published by Hall (1990), Floryan (1991)
and Saric (1994).
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Different stages of instability can be distinguished, depending on the state of the underlying base flow. The stage is
denoted as primary if the unstable base flow is laminar (undisturbed), often initiating the transition process. For example,
in a Blasius boundary layer the primary disturbance could be a purely two-dimensional wave inducing the growth of
three-dimensional perturbations, or in Görtler flow large, primary steady vortices induce amplification of fluctuations in
time. Such instabilities are called secondary instabilities. The strength of secondary amplification depends parametrically
on the primary disturbance amplitude. Finally, tertiary and higher instabilities might occur.

Secondary instabilities are often associated with a weak non-linear stage of the flow, i.e. the flow field is modulated
by a disturbance of small, but already non-linear amplitude. Thus, this stage is not related to a baseflow isolate property.
The secondary disturbance development can be linear again, i.e. it depends parametrically on the primary disturbance
and, thus, this ansatz is called weakly non-linear. Analysis of secondary instability is typically carried out in a frame
of reference fixed with respect to the primary perturbation, allowing the assumption of periodicity in time and in the
streamwise direction of the deformed base flow. For example, in case of a downstream-traveling Tollmien-Schlichting
or Kelvin-Helmholtz (primary) wave, the secondary instability often belongs to the temporal instabilities. Since the
secondary disturbance locks into the convection of the primary, one can think of a resonance.

The Görtler vortices are found to be subject to two types of secondary modes: the sinuous mode and the varicose
mode, or a mix of them. In this paper we study the varicose secondary instabilities that generate structures known as
horseshoe vortices. This type of instability has its origin in the upstream region, related to the derivative du/dy.

Typically, for a controlled transition process, the scenario can be determined by following the evolution of all obser-
vable disturbances without considering their role, while the mechanism can be determined only by a selective variation of
the disturbance input and/or application of stability theories for the respective case, i.e. by identifying the importance of
their contribution to the process.

It appears from the literature that a dynamic control by blowing and suction would be the most convenient means for
controlling a boundary-layer flow (Floryan and Saric (1979), Myose and Blackwelder (1991), Myose and Blackwelder
(1995)). Assuming that an optimal initial perturbation is present, in this paper, we focus on controlling the transition to
turbulence through uniform suction at the wall.

2. FORMULATION

The Navier-Stokes equations written in the vorticity-velocity formulation are discretized using high-order finite-
differences schemes and spectral approximations for the spatial derivatives and a 4th order Runge-Kutta scheme for
temporal discretization.

2.1 Governing equations

The governing equations are the incompressible unsteady Navier-Stokes equations with constant viscosity. Defining
the vorticity as the negative curl of the velocity vector, and using the fact that both velocity and vorticity fields are
solenoidal, one can obtain the following vorticity transport equation in each direction:
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where

ã = ω̃xṽ − ω̃yũ, (4)

b̃ = ω̃zũ− ω̃xw̃, (5)

c̃ = ω̃yw̃ − ω̃z ṽ, (6)

d̃ = ũ2, (7)

are the nonlinear terms resulting from convection, vortex stretching and vortex bending. The variables (ũ, ṽ, w̃, ω̃x, ω̃y, ω̃z)
are the velocity and vorticity components in the streamwise, wall-normal and spanwise directions, respectively; t̃ is time.
The Laplace operator is:
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The continuity equation is given by:

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0. (9)

The above equations are presented in a non-dimensional form. The reference length is a plate-characteristic length L
and the reference velocity is the free stream velocity U∞. The Reynolds number is given by Re = U∞L/ν, where ν is
the kinematic viscosity.

The Görtler number is given by Go = (kc
√
Re)1/2. The terms Go2 ∂d̃∂x/(

√
Reh) and Go2 ∂d̃∂z /(

√
Reh) are the leading

order curvature terms, where h = 1− kcy, kc = L/R is the wall curvature and R is the curvature radius.
Taking the vorticity definition and the mass conservation equation, one can obtain Poisson-type equations for each

velocity component:
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2.2 Disturbance formulation

In the current study a disturbance formulation is adopted, i.e. the flow variables were decomposed in a base flow and
a perturbation:

f̃ = fb + f. (13)

With such formulation, the stability analysis of any base flow (Blasius, Falkner-Skan, etc.), can be easily performed
as both linear and nonlinear terms can be isolated. Some disadvantages of this formulation are the indirect access to the
instantaneous flow variables and a higher memory use due to the larger number of variables.

The variables f̃ = {ũ, ṽ, w̃, ω̃x, ω̃y, ω̃z} are the total flow variables. The base flow is considered two-dimensional,
therefore only ub, vb and ωzb are taken into account, where the index b indicates the base flow.

Introducing Eq. (13) in the equations (1) – (3) and (10) – (12) and subtracting the base flow, the equations for the
perturbations result in:
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where the nonlinear terms a, b, c and d are:

a = ωx(vb + v)− ωy(ub + u), (20)
b = (ωzb + ωz)(ub + u)− ωxw, (21)
c = ωyw − (ωzb + ωz)(vb + v), (22)
d = 2ubu+ u2. (23)
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3. NUMERICAL METHOD

3.1 Discretization of field equations

The flow is assumed to be periodic in the spanwise direction. Therefore, the flow field can be expanded in Fourier
series with K spanwise Fourier modes:

f(x, y, z, t) =
K∑
k=0

Fk(x, y, t)e(iβkz), (24)

where f = u, v, w, ωx, ωy, ωz, a, b, c, d; Fk = Uk, Vk,Wk,Ωxk
,Ωyk ,Ωzk , Ak, Bk, Ck, Dk; and βk is the spanwise

wavenumber given by βk = 2πk/λz , and λz is the spanwise wavelength of the fundamental spanwise Fourier mode,
and i =

√
−1. Note that the Fk may be fully complex, i.e. non-symmetric three-dimensional disturbance fields can be

computed.
Substituting the Fourier transforms (Eq. 24) in the vorticity transport equations (14) – (16) and in the velocity Poisson

equations (17) – (19) yield the governing equations in the Fourier space:
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∂y2 − β
2
k

)
.

The Eq. (25) – (30) are solved numerically in the domain as shown schematically in Fig. 1. The calculations are done
on an orthogonal uniform grid, parallel to the wall. The fluid enters the computational domain at x = x0 and exits at the
outflow boundary x = xmax. Steady disturbances are introduced into the flow field using spanwise suction and blowing
in a disturbance strip at the wall. This strip is located between x1 and x2. Another disturbance strip is used to introduce
unsteady disturbances located in the region where the vortices are already nonlinear. These unsteady disturbances are
used to study the secondary instabilities. In the region located between x3 and x4 a buffer domain technique, from Kloker
et al. (1993), is implemented in order to avoid wave reflections at the outflow boundary. In these simulations a Blasius
boundary layer is used as the base flow.

The time derivatives in the vorticity transport equations are discretized with a classical 4th order Runge-Kutta in-
tegration scheme (Ferziger and Peric (1997)). The spatial derivatives are calculated using a high-order compact finite
difference-schemes (Souza et al. (2005); Souza (2003); Lele (1992); Kloker (1998)). The V -Poisson equation – Eq. (29)
– is solved using a multigrid Full Approximation Scheme (FAS) (Stüben and Trottenberg (1981)). A V-cycle working
with 4 grids is implemented. The code adopted is parallelized using domain decomposition in the streamwise direction.

3.2 Boundary conditions

At the wall (y = 0), a no-slip condition is imposed to both the streamwise (Uk) and the spanwise (Wk) velocity
components. The wall-normal velocity component at the wall (Vk) is specified at the suction and blowing strip region
between x1 and x2, where the disturbances are introduced. Away from the disturbance generator, this velocity component
is set to zero. The function used for the wall-normal velocity V1 at the disturbance generator is:

V1(x, 0, t) = A1 sin3(ε) for l1 ≤ l ≤ l2, (31)

where ε = π(l − l1)/(l2 − l1) and A1 is a real constant chosen to adjust the steady disturbance amplitude. The variable l
indicates the grid point location xl in the streamwise direction, and points l1 and l2 correspond to x1 and x2 respectively.
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Figure 1. Solution domain.

The unsteady disturbances, used to study the secondary instabilities, are also introduced at the wall. It consists in
introducing a slot at the wall, xfs ≤ x ≤ xls, where xfs and xls are, respectively, the first and the last x-position of the
unsteady disturbance strip. The function used for velocity V is:

V1(x, 0, t) = f1(x)A2 sin(ωtt) for xi ≤ x ≤ xf . (32)

A2 is a real constant and can be chosen to adjust the unsteady disturbances amplitude; ωt is the dimensionless fre-
quency. The adopted function f1(x) is a fifth-order function, proposed by Zhang and Fasel (1999). This function is
used in order to make sure that, at y = 0, the vertical velocity components, its first and second derivatives do not have a
discontinuity going in and out of the suction and blowing region.

At the inflow boundary (x = x0), the velocity and the vorticity components are specified based on the Blasius
boundary-layer solution. At the outflow boundary (x = xmax), the second derivatives with respect to the streamwise
direction of the velocity and vorticity components are set to zero. At the upper boundary (y = ymax) the flow is consid-
ered non rotational. This is satisfied by setting all vorticity components and their derivatives to zero. The wall-normal
velocity component at the upper boundary is calculated using the condition:

∂Vk
∂y
|x,ymax,t = 0.. (33)

In addition, at the wall, the condition ∂Vk/∂y = 0 is imposed in the solution of the Uk velocity Poisson equation (Eq.
28), to ensure the mass conservation. The equations used for evaluating the vorticity components at the wall are:

∂2Ωxk

∂x2
− β2

kΩxk
= −∂

2Ωyk
∂x∂y

− βk∇2
kVk, (34)

∂Ωzk
∂x

= βkΩxk
−∇2

kVk. (35)

A damping zone is defined near the outflow boundary, in which all the disturbances are gradually damped down to
zero (Kloker et al. (1993)). This technique is used to avoid reflections in the outflow boundary. Meitz and Fasel (2000)
adopted a fifth-order polynomial, and the same function is used in the present model. The basic idea is to multiply the
vorticity components by a ramp function f2(x) after each sub-step of the integration method. Using this technique, the
vorticity components are taken as:

Ωk(x, y, t) = f2(x)Ω∗k(x, y, t), (36)

where Ω∗k(x, y, t) is the disturbance vorticity component that results from the Runge-Kutta integration and f2(x) is a ramp
function that goes smoothly from 1 to 0. The implemented function is:

f2(x) = f(ε) = 1− 6ε5 + 15ε4 − 10ε3, (37)

where ε = (l − l3)/(l4 − l3) for l3 ≤ l ≤ l4. The points l3 and l4 correspond, respectively, to the positions x3 and x4 in
the streamwise direction. To ensure good numerical results and efficiency, a minimum distance between x3 and x4 and
between x4 and the end of the domain xmax were studied. In the following simulations, the zones had 30 grid points in
each region.
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Another buffer domain, located near the inflow boundary, was also implemented in the code. As pointed out by Meitz
(1996) in simulations involving streamwise vortices, reflections due to the vortices at the inflow can contaminate the
numerical solution. The damping function is similar to the one used for the outflow boundary:

f2(x) = f(ε) = 6ε5 − 15ε4 + 10ε3, (38)

where ε is ε = (l − 1)/(l1 − 1) for the range 1 ≤ l ≤ l1. All the vorticity components are multiplied by this function in
this region.

4. NUMERICAL SIMULATIONS AND RESULTS

The parameters used were those of the experiment of Swearingen and Blackwelder (1987). They considered a
boundary layer on a concave plate with R̄ = 3.20 m and free-stream velocity Ū∞ = 5 m/s. The numerical domain
starts at x0 = 100 mm downstream the leading edge, which corresponds to a boundary-layer thickness parameter δ =√
ν̄x̄0/Ū∞ = 5.477×10−2 cm, a Görtler numberGo = 2.38859 and a Reynolds numberRe = 33124. In the experiment,

the average spanwise wavelength was λ̄z = 18 mm, which corresponds to a non-dimensional wavenumber of β = 34.90.
This corresponds to a wavelength parameter for the fundamental Fourier mode, given by Λf = (Ū∞λ̄z/ν̄)(λ̄z/R̄)1/2, of
Λf = 450. The reference length used is L̄ = 10 cm. The number of grid points used was 2329 and 201 in the streamwise
and the wall-normal directions, respectively. The non-dimensional uniform grid spacing is 5.00 × 10−3 in the stream-
wise. In the wall-normal direction a stretching grid was adopted with the first distance equal 8 × 10−4 and a constant
stretching factor of 1%. The disturbance-strip location was 1.6 ≤ x ≤ 2.6. Twenty one Fourier modes were used in the
simulation. Test runs with a smaller grid spacing and larger number of Fourier modes indicated that the solutions were
grid independent.

The verification and the validation of the code adopted in the present paper can be found in Souza et al. (2004); Malat-
esta et al. (2013). Initially the flow is simulated only with steady disturbances, that give birth to the Görtler vortices. The
domain in the streamwise direction has enough length to let the Vortices appear, develop linearly, non-linearly and finally,
reach the saturation region. In the saturated flow the non-steady disturbances are introduced with different frequencies,
from 20 Hz to 320 Hz, with steps of 20 Hz, in order to verify the receptivity and the secondary instabilities in the flow
field. These disturbances are introduced in a region where the flow is already saturated, using suction and blowing at the
wall. The amplitude of each disturbance is below 10−4. It was made a Fourier analysis of each frequency mode (analyzing
the streamwise velocity), verifying where the maximum disturbance value of each frequency mode in each y × z plane
is, namely Umax(y, z). In Fig. 2 it can be observed that the frequency corresponding to 180 Hz has the maximum growth
rate, and that in the unsteady disturbances saturation region the 20 Hz has the maximum value.

Figure 2. Maximum streamwise velocity disturbance over y × z plane in the streamwise direction. No suction case.

In order to verify the effect of uniform suction in the secondary instabilities development, it was introduced a slot
at the wall, from x = 8.5 to x = 11.7. For the suction at the wall at this slot three values were tested: 1 × 10−4 case,
5×10−4 case, 1×10−3 case. These values are a percentage of the U∞ velocity. In each case the streamwise development
of Umax(y, z) was also analyzed.

Figure 3 shows Umax(y, z) for the case with uniform suction of 1× 10−4. It can be observed that the uniform suction
effect is very small and no significant difference was observed compared to no suction case (Fig. 2).

Multiplying the suction adopted in the last case by a factor of 5, in the 5 × 10−4 case, and analyzing the evolution
of Umax(y, z) in the streamwise direction similar conclusion can be reached. The difference between the cases can be
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Figure 3. Maximum streamwise velocity disturbance over y × z plane in the streamwise direction. Uniform suction of
1× 10−4 case.

observed by a small amount of amplitude of each mode in the saturation region, showing just a small delay in the transition
process.

Figure 4. Maximum streamwise velocity disturbance over y × z plane in the streamwise direction. Uniform suction of
5× 10−4 case.

The last case was simulated with an uniform suction of 1 × 10−3, or 0.1 % of the streamwise velocity out of the
boundary layer. Figure 5 shows the results for Umax(y, z). It can also be observed a very small delay in the transition
process and the amplitude of the unsteady modes is a bit smaller than the no-suction case.

The vortical structures in the instantaneous flow are visualized by Q iso-surfaces to allow the identification of coherent
vortices. Details of this vortex identification technique are given in Dubief and Delvayre (2000). Figure 6 shows a
sequence in time of Q iso-surfaces with a value of Q = 0.5, for the case with uniform suction of 5× 10−4. Two spanwise
wavelengths are shown and the center of the figure in the spanwise direction corresponds to an upwash region. Each
figure is ∆t = T/8 apart from the previous figure giving a complete sequence over one period. In all figures the Görtler
vortices can be seen as four longitudinal rolls up to x ≈ 10.00. The horseshoe structures typical of even secondary-mode
instability can be clearly seen. In the sequence of figures it can be observed that: (a) initially the background disturbances
are first noticed; (b) these disturbances are convected downstream as their amplitudes grow; the next two figures (c) and
(d) in the sequence show that the horseshoe vortices are convected downstream and other horseshoe vortices are formed
behind the first one; Figures (e) and (f) show that these structures are convected and deformed downstream. In the last
two figures of the sequence, structures with high frequencies appear in a region where the amplitudes of all modes reach
saturation. These figures show that the secondary instabilities, that give rise to the horseshoe vortices are still present, and
that the uniform suction did not suppress the transition to turbulence.
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Figure 5. Maximum streamwise velocity disturbance over y × z plane in the streamwise direction. Uniform suction of
1× 10−3 case.

5. CONCLUSIONS

In this paper is presented a Direct Numerical Simulation performed to study the effect of uniform suction in the
laminar-turbulent transition control. The boundary layer flow over a concave wall was initially disturbed with steady dis-
turbances giving rise to a Görtler flow. Unsteady disturbances were introduced in the flow field to verify the development
of secondary instabilities. This transitional flow was used to verify the effect of uniform suction at the wall. The aim was
to postpone the laminar-turbulent transition.

The results were obtained with 3 values of suction: 1 × 10−4 case, 5 × 10−4 case, 1 × 10−3 case. These values
represent a percentage of the U∞ velocity. In each case the streamwise development of Umax(y, z) was analyzed. The
results showed that, with the values used for suction, only a small delay was obtained. Further work will deal with
localized suction and blowing to verify their effects in this process.
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Figure 6. Case A: Iso-surfaces Q = 0.5 visualization of vortical structures in the instantaneous flow field. Görtler-vortex-
mode plus periodic background pulses. (a) t/T=0, (b) t/T=1/8, (c) t/T=2/8, (d) t/T=3/8, (e) t/T=4/8, (f) t/T=5/8, (g) t/T=6/8,

(h) t/T=7/8. T is the period for ωt = 2.513 (20 Hz). Two spanwise wavelengths are shown.
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