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Abstract. This work proposes a mathematical model to study the filling up of an unsaturated rigid porous medium 
by a liquid identifying the transition from unsaturated to saturated flow, considering a new relationship between 
pressure and fluid fraction. The problem is modeled under a mixture theory approach – the mixture consisting of 
three overlapping continuous constituents, representing the porous matrix (solid constituent), the incompressible 
fluid (liquid constituent) and an inert gas constituent included to account for its compressibility. This problem is 
mathematically represented by a nonlinear hyperbolic system. In order to be physically realistic, the fluid fraction 
must satisfy an inequality – an upper bound. The model presented in this work takes into account this upper bound 
to be satisfied by the fluid fraction (and the saturation) that depends on the volume of the pores. The complete 
solution of a Riemann problem associated to the system of conservation laws satisfying the constraint given by the 
saturation upper bound is presented. 
 
Keywords: Flow through unsaturated porous media, transition saturated-unsaturated, constrained unknown, 
Riemann problem.   

 
1. INTRODUCTION) 
 

Although the study of transport in porous media dates from the 1920s, an adequate description of the transition 
from saturated to unsaturated flows through porous media remains an open subject.  The relevance of constrained 
hyperbolic systems may be noted by its presence in different applications, such as two-phase flows, compressible 
plasticity with shocks and description of traffic of vehicles or crowds, including traffic jams, presence of tollgates 
and prediction of traffic accidents on roads. (See Saldanha da Gama et al., 2012 and references therein.) 

Saldanha da Gama (1986) proposed a constitutive relation accounting for a geometrical bound, which arises 
from the rigidity of the porous matrix and the incompressibility of the fluid, avoiding solutions without physical 
meaning. These solutions would correspond to an infinite value for the pressure in saturated flows – when the fluid 
fraction tends to the porosity.  

Saldanha da Gama et al. (2012) imposed mathematically a unilateral geometrical constraint, ensuring that the 
maximum value that the fluid fraction can reach is the porosity value. This imposes an intermediate state arising 
from a geometrical restriction. So in the work of Saldanha da Gama et al. (2012) the porous medium can actually be 
saturated by the fluid, while the equation proposed by Saldanha da Gama (1986) imposes a physical behavior for the 
fluid preventing it to saturate the porous matrix.  

Martins-Costa and Saldanha da Gama (2011) proposed an improvement to the constitutive relation for the partial 
pressure (1986) in which the unilateral geometrical constraint for the fluid fraction, instead of being assumed in the 
whole domain, is considered only in a convenient neighborhood of the porosity (provided that the fluid fraction is 
smaller than the porosity), besides assuring continuity for the pressure and for its first derivative, thus allowing the 
analytical computation of the Riemann invariants associated to the problem.  

This work may be viewed as a sequence of the work of Saldanha da Gama et al. (2012). Although the same 
principles are followed, a new relationship between pressure and fluid fraction is considered, modifying the 
problem.  

In short, this work uses a physically realistic mathematical model to represent the filling up of an unsaturated 
rigid porous matrix by an incompressible fluid, identifying the transition from unsaturated to saturated flow. The 
mechanical model employs a mixture theory approach (Atkin and Craine, 1976; Rajagopal and Tao, 1995) – a 
convenient method for modeling multicomponent systems – supported by a local theory with thermodynamic 
consistency. The unsaturated porous medium is modeled as a mixture of three overlapping continuous constituents: 
a solid (a rigid, homogeneous and isotropic porous matrix), a liquid (an incompressible fluid) and an inert gas, 
assumed with very low mass density; which is included to account for the compressibility of the system as a whole. 
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The problem mathematical description consists of a nonlinear hyperbolic system of two partial differential 
equations representing the mass and momentum conservation for the liquid constituent, since the solid constituent is 
supposed rigid and at rest and the gas constituent is assumed to be inert and to have a very low density.  

The transition from unsaturated to saturated flow takes place when the upper bound for the fluid fraction is 
reached. This upper bound represents a physical constraint that ensures that the obtained generalized solution for the 
non-linear hyperbolic system is within the physically realistic range, regardless the considered initial data. The 
complete solution of the associated Riemann problem accounting for the physical constraint is presented and some 
representative problems are simulated allowing comparing the behavior of the generalized solution whether or not 
subjected to the imposed restriction.  
 
2. MECHANICAL MODEL 

 
Since the chemically non reacting mixture consists of a rigid solid constituent at rest, a liquid constituent – from 

now on denoted as fluid constituent and an inert gas, playing the role of the third constituent, the mechanical model 
for an isothermal flow is obtained by combining suitable constitutive assumptions with the following mass and 
momentum balance equations for the fluid constituent (Atkin and Craine, 1976; Rajagopal and Tao, 1995) 
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where F  stands for the fluid constituent mass density – representing the local ratio between the fluid constituent 
mass and the corresponding volume of mixture, Fv  is the fluid constituent velocity in the mixture, FT  represents 
the partial stress tensor – analogous to Cauchy stress tensor in Continuum Mechanics – associated with the fluid 
constituent, Fb  stands for the body force (per unit mass) and Fm  for the momentum supply acting on the fluid 
constituent due to its interaction with the remaining constituents of the mixture. The ratio between the fluid fraction 
  and the porous matrix porosity   is defined as the saturation  , so that 
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in which f  is the actual mass density of the fluid – regarded from a Continuum Mechanics viewpoint, in contrast 
to F  defined as the fluid constituent mass density.  

Constitutive relations are now presented for the partial stress tensor associated with the fluid constituent and for 
the momentum supply acting on the fluid constituent. The former is modeled under the simplifying assumption 
proposed by Allen (see Saldanha da Gama et al., 2012 and references therein) considering the normal fluid stresses 
dominant over shear stresses and interphase tractions. The momentum source mF is given by a term related to the 
fluid constituent velocity, usually called Darcian term and a term related to the saturation gradient. (Martins-Costa 
and Saldanha da Gama (2001) presented a detailed discussion on this issue.)  
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where f  represents the fluid viscosity, K  the porous matrix specific permeability (both measured considering a 
Continuum Mechanics viewpoint), D  a diffusion coefficient (analogous to the usual mass diffusion coefficient), p  
is a pressure (assumed constant while the flow is unsaturated) and I  is the identity tensor. Since unsaturated flows 
through porous media are characterized by a strong dependence of the motion on the saturation, another simplifying 
assumption is considered in this work: the first term of the momentum source mF, the Darcian term, is neglected.  

The mechanical model is obtained combining the balance equations (1) with the constitutive relations (3). 
Assuming all the quantities depending only on the time t and on the position x, absence of body forces effect and 
that v is the only non-vanishing component of the fluid constituent velocity Fv , the problem may be represented by 
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The nonlinear system presented in equation (4) may be rewritten in a more convenient form by redefining a 

pressure  ˆp p   as ( / )fp p K    D , so that the following nonlinear hyperbolic system represents 
mathematically a mixture theory description of a one dimensional flow of a fluid through an unsaturated rigid 
porous matrix at rest 
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This hyperbolic system may not admit continuous solutions, requiring an enlargement of the space of admissible 

functions in order to admit generalized (discontinuous) solutions. The system presented in equation (5) may also 
represent other relevant Engineering problems such as the dynamical behavior of an elastic rod in the current 
configuration [20] or the dynamics of an ideal gas [21].  

At this point it should be noticed that the unknowns   and v , represent, respectively, the fluid fraction and the 
fluid constituent velocity in the description of the flow through an unsaturated porous medium presented in equation 
(5), and the function p  is a ratio between pressure and density, from now on simply referred to as “pressure”. Both 
  and v  depend on the position x  and on the time t . While the velocity can assume any real value, the fluid 
fraction   must be positive valued and smaller than (or equal to) the porosity  , in order to be physically 
meaningful. In other words,  
 

0 ,      0,  t x       (6) 
 

The inequality presented in equation (6) clearly shows that the volume of the fluid cannot exceed the volume of 
the pores and the positiveness assures the existence of fluid in the pores. 

Since a rigid homogeneous porous matrix is considered, the pressure p  is assumed as a linear increasing 
function of the fluid fraction  , provided that the porous medium is not saturated. However, the (physical) upper 
bound for the fluid fraction must be imposed during any simulation, in order to avoid a physically inadmissible 
situation – namely to allow the fluid fraction to be greater than the porosity. This constraint also gives rise to an 
adequate description of the transition from unsaturated flow (  ) to saturated flow (  ). The constraint    
must be verified for all position and time, otherwise, depending on the initial data, the results may present regions 
without physical meaning – characterized by   . Some of these cases are illustrated in this work. 

It is important to observe that initial data may be conveniently chosen in order to automatically ensure the 
inequality (6) (see, for instance [19, 22]). On the other hand, some initial data may give rise to mathematical 
descriptions without physical meaning (in which Eq. (6) is not always satisfied), except when the constraint is 
imposed during the simulation. This is the case of the saturation process that cannot be simulated without employing 
the constraint   .  

This work main subject is to adequately model the one-dimensional flow of a fluid through a rigid porous 
medium, with uniform porosity  , which is mathematically represented by the following system 
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2.1 Relationship between pressure and fluid fraction 
 

In order to clearly identify the transition from unsaturated to saturated flow, the relationship between pressure 
and fluid fraction is now analyzed. As stated before, the unsaturated flow of a liquid through a rigid porous medium 
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may be regarded as a mixture of three overlapping continuous constituents: a liquid (incompressible fluid), a solid 
(porous matrix) and a very low mass density gas (providing the compressibility of the system). The existence of this 
gas can be assumed while the fluid (liquid) fraction  ,  is less than the porosity   – in other words while the flow is 
unsaturated. In such cases it is possible to assume that the (partial) pressure p  is a constitutive function of the fluid 
fraction. In this work, assuming that c is a positive constant, the following relation is assumed 
 

2 31 provided     0
3

p c       (8) 

 
It worth noting that the above constitutive relation is distinct to the relation employed by Saldanha da Gama et 

al. (2012), characterizing a distinct problem. Any constitutive choice for the pressure p  only makes sense for   
within the open interval (0, ) . In fact, p  cannot be evaluated from (8) when    – in other words, when the flow 
is saturated, since there exists a geometrical bound (rigid porous medium) that allows a pressure increasing with a 
fixed fluid fraction  . For a rigid and homogeneous porous medium, the following must hold 
 

ˆ ( )            for   0   unsaturated flow
ˆ( )      for           saturated flow
p p
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It should be remarked that relation (9) must be taken into account in order to adequately perform the the 

simulation of transition from unsaturated flow to saturated flow. 
 
3. THE RIEMANN PROBLEM ASSOCIATED TO SYSTEM (5) – UNCONSTRAINED  
 

The Riemann problem associated to system (5) is built by assuming a step function as its initial data. 
The solution (in a generalized sense) of this Riemann problem depends only on the ratio /x t  being obtained by 

connecting the left state ( , )L Lv  and the right state ( , )R Rv  to an intermediate state ( , )v 
 by means of 

rarefactions and shocks (Smoller, 1983; Toro, 1999). 
The two eigenvalues of system (5) are given, in increasing order, by 1 '1

ˆ ( , ) 'v v p v c         and 

2 '2
ˆ ( , ) 'v v p v c        , where 'p  represents the first derivative of p  with respect to  , given by 2 2c  .  

The left state is connected to the intermediate state by a 1-rarefaction if, and only if, between these two 
states, 1 /x t  . Analogously, the right state is connected to the intermediate state by a 2-rarefaction if, and only if, 
between these two states, 2 /x t  . 

When two states are connected by a discontinuity, they must satisfy the Rankine-Hugoniot jump conditions 
(Smoller, 1983; Godlewski and Raviart, 1991, Dafermos, 2010) given by 
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where “ [  ] ” denotes the jump and s  denotes the shock (discontinuity) speed. Also, the entropy conditions must be 
satisfied – ensuring that the states cannot be connected by a rarefaction (Smoller, 1983; Toro, 1999).  

The states ( , )L Lv  and ( , )v   are connected by a 1-shock while the states ( , )v 
 and ( , )R Rv  are connected 

by a 2-shock, if they satisfy the jump conditions (10) and the entropy conditions given, respectively, by 
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So, if L R R Lc v v    , the solution is 1-rarefaction/2-rarefaction, with the intermediate state ( , )v   given by 
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For a solution 1-shock/2-shock, it is sufficient that 
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When the solution is neither 1-rarefaction/2-rarefaction nor 1-shock/2-shock, then it will be 1-rarefaction/2-

shock (provided L R  ) or 1-shock/2-rarefaction (provided L R  ). 
  

For a 1-rarefaction/2-shock solution, the intermediate state ( , )v 
 is obtained from 
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while for a 1-shock/2-rarefaction case, the intermediate state ( , )v 

 is obtained from 
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Table 1 states the conditions for the four possible Riemann problem solutions, provided that the intermediate 

state differs from the left and from the right ones.  
It is remarkable that the inequality 0   is automatically satisfied for the solutions 1-shock/2-shock, 1-

rarefaction/2-shock and 1-shock/2-rarefaction, since  * , 0L RMIN    . When the solution is 1-rarefaction/2-

rarefaction, it comes that  * ,L RMIN   . Nevertheless, taking into account equation (12), the positiveness of the 
fluid fraction is ensured. 
 
4. AN EXAMPLE – UNCONSTRAINED  
 

Considering the flow through a rigid porous medium with constant porosity  , fluid fraction   and fluid 
constituent velocity v, the following associated Riemann problem may be stated  
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where  and v  are positive constants, such that   . 
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In this case, it is easy to see that the solution (in a generalized sense) is 1-shock/2-shock. So,  
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in which the intermediate state, the pressure p  and the shock speeds are obtained from 
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The solution of the associated Riemann problem (16), given by equations (17)-(20), is physically realistic 

provided that the intermediate fluid fraction *  is always smaller than or equal to the porosity  .   
It is important to note that many initial data give rise results without physical meaning. However, if adequate 

initial data is chosen, assuring   , the nonlinear hyperbolic system (7) may be approximated by Glimm’s 
method, implemented by employing the solution of a certain number of associated Riemann problems (Saldanha da 
Gama and Martins-Costa, 1997; Martins-Costa and Saldanha da Gama, 2001).  
 
5. THE RIEMANN PROBLEM AND THE CONSTRAINT     
 
 

Table 1. Conditions for the four possible Riemann problem solutions.  
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Since L  and R  satisfy the inequality    then, taking into account the conditions presented in Table 1, this 
inequality is ensured everywhere, provided that the solution is 1-rarefaction/2-rarefaction ( *L R    ), 1-
rarefaction/2-shock ( *L R    ) or 1-shock/2-rarefaction ( *L R    ). 

However, when the solution is 1-shock/2-shock, one may have   , for /x t  between 1s  and 2s , if p is 
considered as a function of  . In such cases it must be taken into account that the pressure p for the saturated case 
(  ) is not constitutive. In other words, p may assume any value greater than (or equal to) 2 3 / 3p c  , provided 
the Rankine-Hugoniot jump conditions are satisfied as well as the entropy conditions. 

So, if the root of equation (13) is such that     the physical meaning of the phenomenon has been lost. In 
these cases, the intermediate state must satisfy the jump conditions with    . Hence p

 and v  are evaluated 
from 
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1

2 2 2

2

L L L L L

L L L

R R R R R

R R R

v v v v p c s
v v

v v v v c p s
v v

    

   

    

   

  



  



   
 

 

   
 

 

 (21) 

 
Thus, the intermediate pressure is obtained from the following equation 

 

2 3 2 31 1 1 1 1 1
3 3L L L R

L R

p c c p v v 
   

 

      
            

      
 (22) 

 
Since 
 

   

2 2 2 2

3 3
L R

R L L R
R L R L L R

c c v v 
 

     
    

 
 (23) 

 
and the intermediate state for the fluid fraction ( ) must satisfy the Rankine-Hugoniot condition and the constraint, 
the intermediate pressure must be such that 2 3 / 3p c   . 
 
6. FINAL REMARKS 
 

In this work a mathematical model for flows through unsaturated porous media, identifying the transition from 
unsaturated to saturated flow, was proposed by including a constraint that must be satisfied to build physically 
realistic generalized solutions for any initial data. The complete solution of a constrained nonlinear hyperbolic 
problem with shock waves – an associated Riemann problem containing a restriction (an upper bound for the fluid 
fraction, represented by the porosity), was presented as well as its application to flows through porous media. 
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