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Abstract. The classical model of Hodgkin and Huxley for the action potential in excitable cells, such as axons or 
Purkinje fibers, is addressed in this paper. Hodgkin and Huxley proposed that the action potential be modeled in terms 
of an electric circuit with capacitance and ionic electrical currents. Sodium and Potassium ions are the most 
influential in the action potential and are distinguished in terms of their own proper currents, in comparison to the 
other ions. The model involves a non-linear system of four ordinary differential equations, the coefficients of which are 
given in terms of functions of the applied potential, and involve several empirical parameters. One important point 
about such parameters is their variability, like from one individual to another. In this paper, we apply the Markov 
Chain Monte Carlo (MCMC) method for the estimation of a parameters appearing in Hodgkin-Huxley´s model, by 
using simulated measurements of the action potential. For the application of the MCMC method, an analysis is 
performed regarding the prior distribution used for the unknown parameter. Among the priors examined in this paper 
we have Uniform, Gaussian, Log-normal and Rayleigh distributions. 
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1. INTRODUCTION 
  

It has been long known that our neurological system propagates signals via ionic changes across the neurons 
membranes [1]. The resulting electric potential between the intracellular and extracellular media has been denoted as 
the action potential [1]. Failures or abnormalities in the ionic changes and in their resulting action potentials can be 
associated to several neurological disturbs, like epilepsy, Parkinson's and Alzheimer's diseases [2]. 

A typical normal action potential in neurons is presented in figure 1, where the periods corresponding to the 
occurrence of different physico-chemical phenomena are designated by numbers [1]. Such periods can be described as 
follows [1]: 

Period 1 – Rest: In this period, the action potential is practically stable. 
Period 2 – Un-polarization:  During this period, the cell membrane allows the transfer of positive charges from the 

extracellular medium. The sodium ion is the most likely to cross the membrane at this period, due to its larger 
concentration gradients. As a result, the action potential undergoes a fast increase.  

Period 3 – Re-polarization: As the maximum potential is reached, the sodium channels across the cell membrane 
gradually close and the potassium channels gradually open. Due to the concentration gradients of the potassium ion 
across the cell membrane, it is transferred towards extracellular region and the action potential is reduced. The cell is 
then re-polarized. Depending on how fast this period takes place, the next period might occur or not. 

Period 4 – Hyper-polarization: This period occurs when the re-polarization period is too fast, and the slow 
potassium channels do not close in time sufficient for the potential to reach the stable level of the first period (rest). As 
a result, the potential becomes smaller than that of the first period. 

Period 5 – Action of the Ionic pumps: The final period of the potential variation involves the pumping of sodium 
and potassium ions across the cell membrane in order to restore their initial concentrations in the intracellular and 
extracellular media. This period brings the action potential back to the levels of the first period (rest), so that another 
cycle can be started.   
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Fig. 1. Action potential in neurons.  

 
Hodgkin and Huxley [3] proposed a model for the action potential, in terms of an electric circuit with a capacitance 

current and ionic currents. The model involves a non-linear system of four ordinary differential equations, whose 
coefficients are given in terms of functions of the applied potential and involve several parameters. This paper deals 
with the estimation of parameters appearing in Hodgkin-Huxley's classical model, by using measurements of the action 
potential. An analysis of the sensitivity coefficients is performed in order to verify possible small magnitudes of such 
quantities and linear dependence among the parameters [4-6]. The inverse parameter estimation problem is solved 
within the Bayesian framework, by applying the Metropolis-Hastings implementation of the Markov Chain Monte 
Carlo (MCMC) method [6-8]. Different prior probability functions are examined for the parameter of interest in this 
work, which is the capacitance of the equivalent electric circuit. The examined priors include the following probability 
functions: Gaussian, Rayleigh, Uniform and Log-Normal. The priors for the other parameters were modeled in terms of 
Gaussian distributions [7,8]. 

The accurate estimation of state variables appearing in Hodgkin-Huxley's model might serve for the prediction of 
diseases. Other recent articles dealing with Hodgkin-Huxley's model, including some of its variations, as well as related 
inverse problems, can be found in references [9-15]. 

2. HODGKIN-HUXLEY´S MODEL  
 Hodgkin and Huxley, in their classical paper of 1952 [3], examined the behavior of an axon under the effects of an 
imposed electric current across the cell membrane. The cell electric potential was assumed to be independent of the 
position within the cell, that is, the intracellular electric resistance was neglected. In their experiments, Hodgkin and 
Huxley observed that the conductance of some ions across the cell membrane, like sodium and potassium, varied with 
changes in the axon potential. The imposed electric current across the cell membrane was then modeled in terms of a 
capacitive current and ions' currents. Being the sodium and potassium ions recognized as the most important ones in 
this process, as discussed above, their currents were treated as separate from those of the other ions, which were 
quantified in a global manner and referred to as leakage current. Hodgkin and Huxley [3] then proposed their model 
based on the electrical circuit depicted in figure 2. For the model, the transfer of ions towards the cell interior was 
assumed as positive. 
 

 
Figure 2. Electric circuit for Hodgkin-Huxley's model [3] 
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The current across the cell membrane is then given by: 
( )

  m
ions m

dV t
I I C

dt
         (1) 

where mC is the cell capacitance. The ions current is given by: 
 

ions Na k LI I I I          (2) 
 
The ionic currents are modeled by the conductances of the channels corresponding to each ion. Such conductances 

for the sodium and potassium ions were experimentally determined and written as [3]:  
 

3 max
Na NaG G m h             (3) 

4 max
k kG G n        (4) 

 
where m and n represent the open fraction, or probability of the channels being open, for sodium and potassium, 
respectively, while h is the probability of the channel being closed for the sodium ions. The variables m and n are also 
referred to as the activations of the ion transfer through the cell membrane, while h is referred to as the inactivation for 
the sodium ion transfer. In equations (3) and (4), max

NaG and max
kG  refer to the maximum sodium and potassium 

conductances, respectively. The electric currents resulting from the sodium and potassium ions flowing across the cell 
membrane are thus respectively given by   
 

 3 max
Na Na m NaI G m h V V             (5) 

 4 max
k k m kI G n V V        (6) 

 
where NaV  and kV  give the equilibrium potential for the sodium and potassium ions, respectively.  

Similarly, the electric current resulting from the flow of the other ions is given by: 
 

  L L m LI G V V       (7) 
 
By substituting equations (5)-(7) into equations (1) and (2) we obtain 
 

     3 4      max maxm
m Na m Na k m k L m L

dV
I C G m h V V G n V V G V V

dt
   (8) 

Hodgkin and Huxley [3] proposed the following ordinary differential equations to describe the ion channels 
opening/closing dynamics:  

 1   m m
dm m m
dt

      (9) 

   1   h h
dh h h
dt

      (10)  

   1   n n
dn n n
dt

      (11)  

 
where the coefficients  and  in each equation are given functions of mV  [3]. While the coefficients  represent the 
inflow of ions towards the cell interior, the coefficients  represent the opposite effect. The following expressions were 
proposed by Hodgkin and Huxley [3] for the axon studied in their experiment: 
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where mV  is given in milivolt. The initial conditions for the cases addressed herein were taken as Vm (0) = -5 mV, m = 0, 
n = 0.33 and h = 0.5 [16]. Other parameters appearing in the model were measured by Hodgkin and Huxley [3]; such 
parameters are presented in table 1.  
 

Table 1. Parameters for Hodgkin-Huxley's model for an axon 
Parameter Value Parameter Value 

 mC F  1  kV mV  -12 

 max
NaG S  120  max

LG S  0.3 

 NaV mV  115  LV mV  10.6 

 max
kG S  36 I(mA) 6 

 

3. INVERSE PROBLEM  
Inverse problems can be broadly defined as those dealing with the estimation of unknown quantities appearing in 

the mathematical formulation of any kind of process, by using measurements of some dependent variable of the 
problem (observable response of the system) [4-8].  

In the direct problem associated with Hodgkin-Huxley's model given by equations (8) to (17), all the parameters 
and initial conditions are known; the objective of the direct problem is then to determine the time evolutions of the 
action potential, Vm(t), as well as of the sodium and potassium channel dynamics represented by m, h and n. 

On the other hand, the inverse problem under analysis in this work involves the use of measurements of the action  
potential, Vm(t), to recover parameters appearing in Hodgkin-Huxley's model. Such parameters include , ,max max

m Na kC G G  
and LG , as well as the empirical constants appearing in equations (12) to (17), yielding a maximum of twenty 
parameters. We denote the vector of parameters appearing in the formulation as 

 
PT  [P1,P2,...,PN]      (18) 

 
where N is the number of parameters.   

The vector containing the measured action potential is denoted as:  
 

  1 2, , ... ,T
IY Y YY    

   
(19) 

where ( )i iY Y t , i = 1, …, I.  
By assuming that the measurement errors are Gaussian random variables, with zero means and known covariance 

matrix W and that the measurement errors are additive and independent of the parameters P, the likelihood function can 
be expressed as [4, 5, 6,8]: 

 
1/2/2 11( ) (2 ) exp [ ( )] [ ( )]

2
I T

m m 
  

  
 

Y P W Y - V P W Y - V P    (20) 

 
where ( )mV P is the solution of the direct (forward) problem with known P, that is,  
 

       1 2; , ; ,...., ;T
m m m m It t t   V P V P V P V P     (21)  

 
The likelihood function gives the relative probability density of different measurement outcomes Y with a fixed P 

[6,7,8]. A very common approach for the solution of inverse problems, dealing with the estimation of the parameters P 
with the measurements Y, is to maximize the likelihood probability density, Eq. (20). This can be accomplished through 
the minimization of its exponent, resulting in the popular maximum likelihood objective function. One important remark 
is that such classical approach for the solution of parameter estimation problems is not based on the modeling of prior 
information and related uncertainty about the unknown parameters. On the other hand, in approaches based on Bayesian 
statistics, the probability distribution models for the measurements and for the unknowns are constructed separately and 
explicitly.  

The solution of the inverse problem within the Bayesian framework is recast in the form of statistical inference from 
the posterior probability density, which is the model for the conditional probability distribution of the unknown 
parameters given the measurements. The measurement model incorporating the related uncertainties is called the 
likelihood, given in this work by equation (20). The model for the unknowns that reflects all the uncertainty of the 
parameters without the information conveyed by the measurements, is called the prior model [6-8]. 

ISSN 2176-5480

4662



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

The formal mechanism to combine the new information (measurements) with the previously available information 
(prior) is known as the Bayes’ theorem [6-8].Therefore, the term Bayesian is often used to describe the statistical 
inversion approach, which is based on the following principles [8]: 1. All variables appearing in the model are random; 
2. The randomness describes the degree of information concerning their realizations, which is coded in probability 
distributions; and 3. The solution of the inverse problem is the posterior probability distribution, from which 
distribution point estimates and other statistics are computed.  

Bayes’ theorem is stated as [6-8]: 
 

( ) ( )
( ) ( )

( )posterior

 
 


 

P Y P
P P Y

Y
     (22) 

 
where posterior(P) is the posterior probability density, (P) is the prior density, (Y|P) is the likelihood function and 
(Y) is the marginal probability density of the measurements, which plays the role of a normalizing constant. 

Sampling of the posterior distribution by using Markov Chain Monte Carlo (MCMC) methods is the most general 
technique for the computation of estimates within the Bayesian framework. The most common MCMC technique is the 
Metropolis-Hastings algorithm [6-8]. The implementation of the Metropolis-Hastings algorithm starts with the selection 
of a proposal distribution p(P*,Pt) which is used to draw a new candidate state P*, given the current state Pt of the 
Markov chain. Once the proposal distribution has been selected, the Metropolis-Hastings sampling algorithm can be 
implemented by repeating the following steps: 

 
1. Sample a Candidate Point P* from the proposal distribution p(P*,Pt ). 
2. Calculate the acceptance factor: 

* ( 1) *

( 1) * ( 1)

( | ) ( , )min 1,
( | ) ( , )

t

t t

p
p








 

 
  

 

P Y P P
P Y P P

     (23) 

3. Generate a random value U which is uniformly distributed on (0,1). 
4. If U , set Pt = P*. Otherwise, set Pt = Pt



5. Return to step 1. 
 

In this way, a sequence is generated to represent the posterior distribution and inference on this distribution is 
obtained from inference on the samples {P1 , P2 , …, Pn}. However, we note that values of Pi must be ignored 
while the chain has not converged to equilibrium (the burn-in period).  

4. RESULTS  
Generally, the timewise variations of the sensitivity coefficients must be examined before a solution for the inverse 

problem is attempted. For stable and accurate solution of the inverse parameter estimation problems, the sensitivity 
coefficients are required to be linearly-independent and with large absolute values [4-6]. We focus in this work on the 
analysis of the sensitivity coefficients for the parameters , ,max max

m Na kC G G  and LG , by using in the analysis their nominal 
values presented in table 1. The sensitivity coefficients were computed in this work by central finite-differences.  

Figure 3.a presents the reduced sensitivity coefficients with respect these parameters, as well as the action potential. 
The reduced sensitivity coefficients were obtained by multiplying the original sensitivity coefficients by their 
corresponding parameters. Hence, they have the same units of the action potential, which can then be used as a 
reference to identify small magnitudes and linear dependence of the sensitivity coefficients. Since some sensitivity 
coefficients attain very large values in the un-polarization period, figure 3.b was prepared with a zoom of figure 3.a in 
the region where the action potential variations take place. An analysis of figure 3.b shows that the sensitivity 
coefficient with respect to GL exhibits small magnitudes for the case under analysis. Furthermore, this figure shows a 
strong linear dependence of the sensitivity coefficients with respect to all parameters. Therefore, the parameters 

, ,max max
m Na kC G G  and LG cannot be simultaneously estimated by using measurements of the action potential. 

Based on the foregoing analysis of the sensitivity coefficients, this work will consider the estimation of one single 
parameter, by assuming the others as known from theoretical predictions or from other experiments. In the classical 
approaches for parameter estimation based, for example, on the minimization of the maximum likelihood objective 
function, these judged "known" parameters would be considered as deterministic quantities in the inverse analysis, 
although their degrees of nuisance might be limited to their mean values and to some measure of their uncertainties. On 
the other hand, with a technique within the Bayesian framework, the uncertainties in the judged "known" parameters 
can be appropriately taken into account through their prior probability functions.   
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(a) Whole time range (b) Region of variation of the action potential 

Fig.3. Reduced Sensitivity Coefficients. 
 
Since the capacitance of the equivalent electrical circuit, mC , exhibits a sensitivity coefficient of large magnitude 

(see figures 3.a,b), that is, the action potential response is severely affected by changes on such parameter, we will 
consider its estimation in this work. This paper is focused on the analysis of the prior distributions for this unknown 
parameter. The following prior distributions are examined (written for a random variable x): Uniform, Gaussian, 
Lognormal and Rayleigh, which are respectively given by: 

 
1 , if                    

( )
0  ,  otherwise                      

a x b
p x b a


 

 



     (24.a) 

 
2

22

2

1( )
2

x

p x e






 
 
 
        (24.b) 

  
2

221( )
2

Ln x

p x e
x





 

 
 
  
        (24.c) 

2

22
2( )

x
xp x e

b


 
 
 
         (24.d) 

 
For the sake of comparison, the Uniform, Gaussian and Lognormal distributions have means given by the nominal 

value presented in table 1, that is, 1m mC C F  . The bounds for the uniform distribution are given by 
0.2m mC C and the standard-deviations of the Gaussian and Lognormal distributions are 0.2 mC . The mode of the 

Rayleigh distribution is given by 1m mC C F  . These four prior distributions are presented in figure 4.  
For the results presented below, a Gaussian prior was used for the other parameters appearing in Hodgkin-Huxley's 

model. The means for these priors were taken as the nominal values presented in table 1, and the standard-deviations as 
1% of the nominal values. The parameters were assumed as independent.  

The capacitance of the equivalent electrical circuit, mC , was estimated by using simulated measurements of the 
action potential. Such measurements were obtained from the solution of the direct problem with the nominal values 
presented in table 1 and with the coefficients given by equations (12) to (17). The measurement errors were simulated 
by an additive Gaussian noise, with zero mean and a constant standard deviation given by 5% of the maximum 
potential. The numerical solution of the Hodking-Huxley's model and the simulated measurements are presented in 
figure 5. 
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Fig. 4. Prior distribution examined for mC

 
 

 
The Markov chains for the capacitance were started at values 50% larger than the nominal value of mC . The chains 

for all the other parameters were started at values 50% larger than their nominal values. The proposals were taken as 
Gaussian distributions with standard-deviations given by 0.2% of the current parameter value in the chain. 
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Fig. 5. Exact action potential and simulated measurements  

 
The Markov chains for mC , obtained with the four different prior distributions examined for this parameter, are 

presented in figures 6.a,b. Figure 6.b shows a magnification of figure 6.a in the region up to 550 states in the chain, 
where convergence is achieved for the Gaussian, Lognormal and Rayleigh distributions. On the other hand, figure 6.a 
shows that the chain resulting from the Uniform prior does not converge to the actual parameter, even after 4000 states. 
Such behavior results from the fact that the Uniform prior used in this work does not provide any information about the 
region of higher probability for the parameter, since all values in the interval 0 < mC < 2 are equally probable. The 
acceptance ratios of the states of the Markov chains were around 23% for the Gaussian, Lognormal and Rayleigh prior 
distributions, but the acceptance ratio for the Uniform prior was of 10%, due to the same reason given above for its lack 
of convergence for the chain.  
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Fig.6. Markov chains with Gaussian, Uniform, Rayleigh and Lognormal priors. 
 
The marginal means obtained for the parameters mC , máx

NaG , máx
kG  and LG , with each of the prior distributions 

examined in this work are presented in table 2, together with their associated uncertainties at 99% confidence levels 
(inside parentheses). Os valores estimados e as incertezas associadas com nível de confiança de 99%, que é apresentada 
entre parênteses, são apresentados na Tabela 4. For the Gaussian, Lognormal and Rayleigh distributions, the estimated 
means are in excellent agreement with the exact values of the parameters and the associated uncertainties are realtively 
small. 

 
Tabela 4. Marginal means and uncertainties at the 99% confidence levels 

  ( )mC F    máx
NaG S    máx

kG S    LG S  

Exact 1.000 120.000 36.000 0.300 
Uniform 1.458(0.065) 113.965(3.173) 37.325(0.743) 0.304(0.007) 
Gaussian 1.001(0.027) 119.672(3.338) 36.133(0.857) 0.301(0.001) 
Lognormal 1.010(0.026) 119.914(2.833) 36.112(0.927) 0.301(0.007) 
Rayleigh 0.997(0.025) 120.201(2.937) 35.918(0.907) 0.299(0.008) 

 

5. CONCLUSIONS  
 
 The Metropolis-Hastings algorithm was applied for the estimation of parameters in Hodgkin-Huxley's model, by 
using simulated measurements of the action potential. An analysis of the sensitivity coefficients reveals parameters with 
strong correlation, so that the inverse problem was focused on the estimation of the capacitance of the equivalent 
electrical circuit, mC . For this parameter, four different prior distributions were examined, namely: Gaussian, Uniform, 
Rayleigh and Lognormal . The Uniform, Gaussian and Lognormal distributions have means given by the nominal value 
of mC . The bounds for the uniform distribution are given by 0.2m mC C and the standard-deviations of the Gaussian 
and Lognormal distributions are 0.2 mC . The mode of the Rayleigh distribution is given by the nominal value of mC . 
The priors for the other judged "known" parameters were taken in the form Gaussian distributions. The means for these 
priors were taken as the nominal values for the parameters, and the standard-deviations as 1% of the nominal values. All 
the parameters were assumed as independent. 
 The Markov chains converged for the exact value of mC  with the Gaussian, Lognormal and Rayleigh prior 
distributions. On the other hand, the chain resulting from the Uniform prior does not converge to the actual parameter, 
even after 4000 states. Such behavior results from the fact that the Uniform prior used in this work does not provide any 
information about the region of higher probability for the parameter. The acceptance ratios of the states of the Markov 
chains were around 23% for the Gaussian, Lognormal and Rayleigh prior distributions, but of only 10% for the Uniform 
prior. 
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