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Abstract. The vibration of structures and the modal analysis has become more relevant by the use of less mass and 
more flexible structural elements. The stiffness of the connections also affects the dynamic parameters. It happens 
because less or more flexible links can change all the structural mass, global stiffness and damping. These aspects are 
present in several structures of buildings and can affect their static and dynamic behaviors. This paper presents a 
BEM-FEM (Boundary Element Method – Finite Element Method) procedure to obtain the dynamic response of a flat 
frame building structure subjected to two different kinds of constrains: in the first case, its bases are clamped (zero 
displacement) and in the second one, they are coupled to a soil-foundation system. To performance these evaluations, 
the frame structure is modeled by FEM and a direct version of BEM is applied to synthesize the dynamic compliance 
matrix of a rigid and massless foundation interacting with unbounded soil. The foundation compliance matrix is 
coupled to a frame, leading to the dynamic response of a coupled frame-foundation-soil system. The article describes 
the methodology applied to couple rigid bodies with the BEM mesh. This strategy allows performing frequency domain 
analysis of a frame-foundation-soil system. These analyzes are related to natural frequencies comparing a clamped 
frame and a frame-foundation-soil system under wind effects. 
 
Keywords: boundary element method, finite element method, soil-structure interaction 

 
1. INTRODUCTION 
 

A classical way of performing dynamic analysis of structures is called modal analysis which is a method to obtain 
enough information of systems or structures that reproduce their dynamics (Clough and Penzien, 1975). In the classical 
modal analysis these information are related to the natural frequencies of the system (eigenvalues) and the modes of 
vibration (eigenvectors) (Meirovitch, 1975). This kind of analysis allows uncoupling the system of equations and the 
dynamic solution becomes the weighted superposition of the uncoupled solutions. However, there are some pre-
requisites to perform the classical modal analysis. The system of equations that describes the structure must be linear 
and has constant coefficients. Another aspect is related to the damping which must be proportional to a combination of 
mass and stiffness of the system (Coughey, 1960). 

A typical structure with constant coefficients and proportional damping can be seen in Fig. 1a. The structure is 

composed by three massesim , three measures of stiffness ik and damping with three coefficients ic  (i = 1, 2, 3). The 

structure is supported by a fixed foundation with massfm . This model states that the foundation has a displacement of 

zero, regardless the effort acting on it. Under many circumstances this assumption is reasonable but for many other 
conditions this is not a good description of reality. In fact the foundations are supported by some means, for example, 
soils. Fig. 1b shows the foundation bonded to a half space which reproduces reasonably homogeneous soil and with 
great depth. 

It is important to notice that the soil interacts with the foundation, which has inertia and stiffness and, therefore, also 
deforms or moves. If soil deforms or moves under the action of efforts, the foundation bonded to it also moves. 
Considering this, the hypothesis shown in Fig. 1a, which describes a fixed foundation, is no longer reasonable. 

The soil usually has an unlimited dimension which excludes the classical modal analysis. The dynamics of soil is 
characterized by the wave propagation towards the unlimited dimension without reflections of them. These waves carry 
energy that are removed from the system. This effect is equivalent to a damping and is named geometric damping 
(Richart, et al., 1970; Hall and Olivetto, 2003). 
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Figure 1. a) Dynamic system supported by a rigid base; b) Dynamic system supported by a half space. 
 

An interesting aspect of the dynamics of soil can be illustrated in the case that a half-space is subjected to a vertical 
excitation, as shown in Fig. 2a which shows a massless rigid foundation bonded to a half-space. On this foundation acts 

a vector of generalized forces { }sF and as a result the foundation has generalized displacements characterized by its 

vector { }sU . Analyzing the relationship between { }sU  and { }sF  it is possible to associate the dynamic behavior of 

a soil spring ( )ωzzk  and a damping ( )ωzzc  that depend on the frequency, ω . 

 

 
Figure 2. a) Dynamic system supported by a half space; b) Lumped parameters soil model. 

 
Thus one can replace the vertical dynamic soil response as a set of springs and dashpots that are frequency function. 

The soil model of Fig. 1b was replaced by the equivalent lumped parameters. The result can be seen in Fig. 2b. 

In general, in 2D or 3D problems, it is possible to relate the vectors generalized force { }sF  and generalized 

displacement { }sU  by the dynamic compliance matrix ( )[ ]ωS  or its inverse, dynamic flexibility ( )[ ] ( )[ ] 1−= ωω SN  

 

( )[ ]{ } { }Ss FUS =ω  and ( )[ ]{ } { }sS UFN =ω        (1) 

 
It was shown that the soil dynamics implies force and displacement relations that depend on frequency. Analysis of 

Fig. 2b shows that the coefficients of the system of equations are not constant but functions of frequency. This also 
means that one cannot perform the classical modal analysis of dynamical systems where the soil is included. 
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It is possible to evaluate the coupling of structures dynamics with soil dynamics to describe the dynamic soil-
structure interaction in the frequency domain (Hall and Olivetto, 2003; Mesquita, 1989). However, for this complete 
analysis, is necessary to solve the whole system of equations for each frequency. 
 
2. BOUNDARY ELEMENT METHOD (BEM) AND THE MODELING OF DYNAMIC SOIL-FOUNDATION 

INTERACTION 
 

The direct version of the BEM is used to synthesize the dynamic stationary soil response. The soil is an isotropic, 

viscoelastic continuum, presenting shear modulussG , density sρ , Poisson ration ν  and internal damping 

coefficient sη . The soil-foundation interface is fΓ  and the remaining boundary of the soil domain issΓ , like in Fig. 

3a. With this definition the boundary displacements and tractions at the soil foundation interface and on the remaining 

soil surface are, respectively fu  ft  and su  st . The algebraic BE system for the soil response may be written as: 
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The rigid foundation response is obtained by imposing kinematic compatibility and equilibrium at the soil-

foundation interface fΓ . In this article the basis of the 3D foundation has dimensions 2a × 2a (see Fig. 3a). Considering 

the vector of the 3D rigid foundation degrees of freedom (DOF) ( )T
zyxzyxs uuuU φφφ ,,,,,=  and the soil 

displacements fu  at the interface fΓ , a relation may be established between them, by means of the kinematic 

compatibility matrix[ ]CC : 

 

{ } [ ]{ }sf UCCu =            (3) 

 

Equilibrium relations between the interface tractions ft  and the vector of external forces applied to the rigid (and 

massless) foundation ( )T
zyxzyxs MMMFFFF ,,,,,=  may be written using a matrix [ ]D  (see Fig. 3a): 

 

{ } [ ]{ }fs tDF =            (4) 

 
The solution of equations (2) to (4) lead to a frequency dependent rigid foundation dynamic flexibility matrix 

( )ωN  (or its inverse, dynamic compliance matrix( )[ ]ωS ) relating the external forces sF  and the rigid foundation 

DOFs sU : 

 

{ } ( )[ ] { }s
s

s FN
Ga

U ω1=   or  ( )[ ] { } { }sss FUSGa =ω   (5) 

 
This procedure has been applied to obtain the dynamic flexibility matrices for soil profiles. Although the synthesis 

of the soil response is three-dimensional, in the remaining of this article only the degrees of freedom and external forces 
on the zx −  plane will be described. Figure 3b shows the structure of the rigid foundation dynamic flexibility matrix, 
considering the zx −  plane as well a possible interpretation of it. The vertical excitation and vertical degree of 

freedom, zF  and zu , are uncoupled from the horizontal and rocking DOFs. 
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Figure 3. a) Foundation over half-space – definitions; b) Structure of the dynamic flexibility matrix. 
 
3. STRUCTURAL ANALYSIS OF FRAME BY THE FINITE ELEMENT METHOD (FEM) 
 
3.1. General 2-D Beam Element – Stiffness matrix 
 

A well known concept used in FEM is the stiffness matrix of an element which is used to relate the external forces 
applied to the nodes of the structural element to its nodal displacements. The general 2D beam element used in the 
frames discussed in this article is shown in Fig. 4: 

 

 
 

Figure 4. Ggeneral 2D beam finite element. 
 
The element equilibrium equation, and consequently the stiffness matrix, can be written as: 
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where: 

 
 
L → length 
A → cross-sectional area 
E → elastic modulus 
I → moment of inertia of the cross-sectional area 
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u = u(x) → displacement 
f = f(x) → axial force 
F = F(x) → shear force 
M = M(x) → moment about z-axis 
v = v(x) → deflection (lateral displacement) of the neutral axis 

dx

dv=θ  → rotation about the z-axis 

 
3.2. General 2-D Beam Element – Mass matrix 
 

The lumped mass matrix for the general 2-D beam element mentioned above is based on the idea the mass is equally 
divided on the nodes like the Fig. 5: 
 

 
 

Figure 5. Lumped mass element. 
 
and it is represented as: 
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where: 

 
ρ → mass density 

 

In this work, the mass matrix [ ]M  is considered to be the lumped one, where the mass is equally divided on the 

nodes and for assembling the damping matrix [ ]C , it will be used a simple and widely applicable model of damping, 

called proportional damping, defined as the linear combination of matrices [ ]M  and [ ]K  , i.e.: 

 

[ ] [ ] [ ]MKC βα +=           (8) 

 
where α  and β  are defined constants. 
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4. SOIL EFFECTS INCORPORATION 
 

As it was mentioned in the introduction and showed in Fig. 2a, it is possible to replace the vertical dynamic soil 
response as a set of springs and dashpots that are frequency function. In order to model the soil effect, it is considered 
the Fig. 6 below. 

 

 
 

Figure 6. Soil-structure interaction model. 
 
The system shown in Fig. 6 leads to the following motion equation: 
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Remembering that: 
 

( )[ ] sss FuSGa =ω   and  suu =2      (10) 

 
and substituting eqs. (10) into eq. (9), one can conclude that: 
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Based on Eq. (11), it is possible to conclude that the soil affects the structure stiffness and it can be seen by the soil 

compliance added to the structure DOF in contact to it in the global stiffness matrix. 
 
5. RESULTS 
 
5.1. Validation example: bar-beam element analysis 
 

In order to validate the BEM-FEM code developed, one example is analyzed. Fig. 7 shows a cantilever beam, whose 
mesh contains 20 finite elements, supported by a foundation bonded to the soil with all theirs geometrical characteristics 
and material properties. 
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Cantilever properties 
L = 2 m 
A = 0.25 m2 
I = 5.208 10-3 m4 

E = 210.107 Pa 
ρ = 7800 kg/m3 

Foundation- soil properties 
a = 1 m 
Gsoil = 1 Pa 
νsoil = 0.25 

ρsoil = 1 kg/m3 

ηsoil = 0.05 

 
Figure 7. Cantilever beam supported by a foundation bonded to the soil. 

 
Table 1 shows the first three analytical eigenfrequencies for the cantilever beam, without interacting with the soil, 

both in the axial and transversal direction: 
 

Table 1. Cantilever eigenfrequencies. 
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Figures. 8a and 8b show the Frequency Response Function (FRF) of the cantilever beam, both in the axial and 

transversal directions respectively. This structure also presents as the rigid-body axial eigenfrequency the analytical 

value sradrb /2.19=ω . This last value is used to determinate the cantilever beam first eigenfrequency under the 

soil-foundation interaction. 
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Figure 8. a) Cantilever beam FRF (axial); b) Cantilever beam FRF (transversal). 
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5.2.  Flat Frame Building Plane Structure 
 

Since the former results are according to the literature, it is possible to evaluate the dynamic behavior of a generic 
frame-foundation-soil system, like the flat frame building presented in Fig. 9, which simulates the wind effect. 

 

 

Frame properties 
h = 2 m 
w = 3 m 
A = 0.00741 m2 
I = 8.728E-5 m4 

E = 210.109 Pa 
ρ = 7800 kg/m3 

F3= 300 N 
F2 = 200 N 
F1 = 100 N 

Foundation-soil properties 
a = 1 m 
Gsoil = 1 Pa 
νsoil = 0.25 

ρsoil = 1 kg/m3 

ηsoil = 0.05 

 
Figure 9. Flat frame building interacting with soil-foundation. 

 
Figures. 10a and 10b show the frame FRF, for 18 and 27 elements for both cases where the structure is fixed over a 

rigid base as well interacting with the soil-foundation. The point considered to build the FRFs is located at the upper left 
corner 
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Figure 10. a) Frame FRF (18 elements); b) Frame FRF (27 elements). 

 
By analyzing Fig. 10a and 10b, the first aspect to notice is related to meshes convergence: results for 18 and 27 

elements are very close. The second aspect is related to the soil coupling: the peak and the value of eigenfrequencies 
decreased, which was expected according to literature. 

 
6.  CONCLUSIONS 

 
The paper analyzes the influence of soil on the dynamic response of frame-foundation systems. In this study two 

distinct frame models have been considered. Initially, a frame with a known analytical behavior coupled to a rigid 
foundation bonded to a 3D half-space was considered just to validate the code. The second analysis deal with a flat 
frame building with the same coupling considered before simulating the wind effects. 
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Both analysis considered BE and FE convergence meshes as well the structures modal analysis without considering 
the soil effects. Finally the BEM-FEM coupling was developed to evaluate the frame-foundation-soil system behavior. 

A more detailed analysis of the system response must be performed. However, the BEM has shown to be an 
efficient and versatile numerical tool to synthesize the dynamic response of unbounded domains. 
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