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Abstract. The vibration of structures and the modal analysis has become more relevant by the use of less mass and
more flexible structural elements. The stiffness of the connections also affects the dynamic parameters. It happens
because less or more flexible links can change all the structural mass, global stiffness and damping. These aspects are
present in several structures of buildings and can affect their static and dynamic behaviors. This paper presents a
BEM-FEM (Boundary Element Method — Finite Element Method) procedure to obtain the dynamic response of a flat
frame building structure subjected to two different kinds of constrains: in the first case, its bases are clamped (zero
displacement) and in the second one, they are coupled to a soil-foundation system. To performance these evaluations,
the frame structure is modeled by FEM and a direct version of BEM is applied to synthesize the dynamic compliance
matrix of a rigid and massless foundation interacting with unbounded soil. The foundation compliance matrix is
coupled to a frame, leading to the dynamic response of a coupled frame-foundation-soil system. The article describes
the methodology applied to couple rigid bodies with the BEM mesh. This strategy allows performing frequency domain
analysis of a frame-foundation-soil system. These analyzes are related to natural frequencies comparing a clamped
frame and a frame-foundation-soil system under wind effects.
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1. INTRODUCTION

A classical way of performing dynamic analysis of structures is called modal analysis which is a method to obtain
enough information of systems or structures that reproduce their dynamics (Clough and Penzien, 1975). In the classical
modal analysis these information are related to the natural frequencies of the system (eigenvalues) and the modes of
vibration (eigenvectors) (Meirovitch, 1975). This kind of analysis allows uncoupling the system of equations and the
dynamic solution becomes the weighted superposition of the uncoupled solutions. However, there are some pre-
requisites to perform the classical modal analysis. The system of equations that describes the structure must be linear
and has constant coefficients. Another aspect is related to the damping which must be proportional to a combination of
mass and stiffness of the system (Coughey, 1960).

A typical structure with constant coefficients and proportional damping can be seen in Fig. 1a. The structure is

composed by three mass®s, three measures of stiffnek$and damping with three coefficien® (i = 1, 2, 3) The

structure is supported by a fixed foundation with nffgs This model states that the foundation has a displacement of

zermw, regardless the effort acting on it. Under many circumstances this assumption is reasonable but for many other
conditions this is not a good description of reality. In fact the foundations are supported by some means, for example,
soils. Fig. 1b shows the foundation bonded to a half space which reproduces reasonably homogeneous soil and with
great depth.

It is important to notice that the soil interacts with the foundation, which has inertia and stiffness and, therefore, also
deforms or moves. If soil deforms or moves under the action of efforts, the foundation bonded to it also moves.
Considering this, the hypothesis shown in Fig. 1a, which describes a fixed foundation, is no longer reasonable.

The soil usually has an unlimited dimension which excludes the classical modal analysis. The dynamics of soil is
characterized by the wave propagation towards the unlimited dimension without reflections of them. These waves carry
energy that are removed from the system. This effect is equivalent to a damping and is hamed geometric damping
(Richart,et al, 1970; Hall and Olivetto, 2003).
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Figure 1. a) Dynamic system supported by a rigid base; b) Dynamic system supported by a half space.

An interesting aspect of the dynamics of soil can be illustrated in the case that a half-space is subjected to a vertical
excitation, as shown in Fig. 2a which shows a massless rigid foundation bonded to a half-space. On this foundation acts

a vector of generalized force[sFS} and as a result the foundation has generalized displacements characterized by its
vedor {U S}. Analyzing the relationship betwef{rU S} and{ FS} it is possible to associate the dynamic behavior of

a il spring kzz(a)) and a damping:zz(a)) that depend on the frequenay,.
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Figure 2. a) Dynamic system supported by a half space; b) Lumped parameters soil model.

Thus one can replace the vertical dynamic soil response as a set of springs and dashpots that are frequency function.
The soil model of Fig. 1b was replaced by the equivalent lumped parameters. The result can be seen in Fig. 2b.

In general, in 2D or 3D problems, it is possible to relate the vectors generalized{ﬁg&eand generalized

displacement{ U S} by the dynamic compliance matr[S(a))] or its inverse, dynamic erxibiIit)[ N(a))] = [S(w)]_l

[Slwl{u.}={Fs} and  [N(@)l{Fs}={u} @

It was shown that the soil dynamics implies force and displacement relations that depend on frequency. Analysis of
Fig. 2b shows that the coefficients of the system of equations are not constant but functions of frequency. This also
means that one cannot perform the classical modal analysis of dynamical systems where the soil is included.
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It is possible to evaluate the coupling of structures dynamics with soil dynamics to describe the dynamic soil-
structure interaction in the frequency domain (Hall and Olivetto, 2003; Mesquita, 1989). However, for this complete
analysis, is necessary to solve the whole system of equations for each frequency.

2. BOUNDARY ELEMENT METHOD (BEM) AND THE MODELING OF DYNAMIC SOIL-FOUNDATION
INTERACTION

The direct version of the BEM is used to synthesize the dynamic stationary soil response. The soil is an isotropic,
viscoelastic continuum, presenting shear moddys densityo,, Poisson rationV and internal damping

coefficient’), . The soil-foundation interface i6; and the remaining boundary of the soil domaihislike in Fig.

3a. With this definition the boundary displacements and tractions at the soil foundation interface and on the remaining
soil surface are, respectively; t; andug t . The algebraic BE system for the soil response may be written as:

He Hyg {uf}_ Gy Gy {tf} 2
Hsf Hss us Gsf Gss ts
The rigid foundation response is obtained by imposing kinematic compatibility and equilibrium at the soil-

foundation interfac€ ; . In this article the basis of the 3D foundation has dimensions 2a x 2a (see Fig. 3a). Considering

the vector of the 3D rigid foundation degrees of freedom (Ddl'y’)s:(ux,uy,uz,¢x,¢y,¢z)T and the soill
displacementsU; at the interfacé , a relation may be established between them, by means of the kinematic

conpatibility matrix[CC] ;
{u}=[cclu.} @®)

Equlibrium relations between the interface tractiohns and the vector of external forces applied to the rigid (and

massless) foundatiorF (= (F wFypFaM MM Z)T may be written using a matr{>D] (see Fig. 3a):

{F}=[Dl{t} (4)

The solution of equations (2) to (4) lead to a frequency dependent rigid foundation dynamic flexibility matrix
N(a)) (or its inverse, dynamic compliance ma{rS(a))]) relating the external forcek and the rigid foundation

DOFs U.:

{Us}:a%s N(@)]{F.) or ag[s(a)]{u.}={F.} ©

This procedure has been applied to obtain the dynamic flexibility matrices for soil profiles. Although the synthesis
of the soil response is three-dimensional, in the remaining of this article only the degrees of freedom and external forces
on the X — Z plane will be described. Figure 3b shows the structure of the rigid foundation dynamic flexibility matrix,
considering theXx — 2 plane as well a possible interpretation of it. The vertical excitation and vertical degree of

freedom,F, andu,, are uncoupled from the horizontal and rocking DOFs.
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Figure 3. a) Foundation over half-space — definitions; b) Structure of the dynamic flexibility matrix.

3. STRUCTURAL ANALYSIS OF FRAME BY THE FINITE ELEMENT METHOD (FEM)

3.1.General 2-D Beam Element — Stiffness matrix

A well known concept used in FEM is the stiffness matrix of an element which is used to relate the external forces
applied to the nodes of the structural element to its nodal displacements. The general 2D beam element used in the

frames discussed in this

U; ,](;

article is shown in Fig. 4:
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Figure 4. Ggeneral 2D beam finite element.

The element equilibrium equation, and consequently the stiffness matrix, can be written as:

EA 0 0 -EA 0
12E1  6E| 12E1  6EI
0 E 12 0 =5 12
6EI  AE| 6EI 2EI
2 0 T2
L L L L
L L
12E1  6E| 12E1  6EI
0 T Tz EE
0 6EZI 2FE| 0 _6I52I 4E|
I L L L L
where:
L - length

A - cross-sectional area
E - elastic modulus

| — moment of inertia of the cross-sectional area
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u = u(x) - displacement

f=1f(x) - axial force

F = F(X) - shear force

M = M(X) - moment about z-axis

v = V(X) — deflection (lateral displacement) of the neutral axis

dv , .
= d_ - rotation about the z-axis
X

3.2.General 2-D Beam Element — Mass matrix

The lumped mass matrix for the general 2-D beam element mentioned above is based on the idea the mass is equally
divided on the nodes like the Fig. 5:

_pAL _:PAL
° L
! ]
L

Y
i J

Figure 5. Lumped mass element.

and it is represented as:

% 0 0 0 0 0
0 % o0 o
[M uupeo) @)
LUMPED 0 0 0 'OQL 0 0
0 0 0 0 pTA"
0 0 0 0 0 o0
where:

p - mass density

In this work, the mass matri[<M] is considered to be the lumped one, where the mass is equally divided on the
nodes and for assembling the damping ma{f&], it will be used a simple and widely applicable model of damping,

caled proportional damping, defined as the linear combination of mat[riMa]s and[ K] ,le.
[c]=a[K]+B[M] ®)

where @ and [ are defined constants.
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4. SOIL EFFECTS INCORPORATION

As it was mentioned in the introduction and showed in Fig. 2a, it is possible to replace the vertical dynamic soil
response as a set of springs and dashpots that are frequency function. In order to model the soil effect, it is considered
the Fig. 6 below.

half-space

Figure 6. Soil-structure interaction model.

The system shown in Fig. 6 leads to the following motion equation:

n}”q"'( gt Cz) u- G U2+(k1+ kz)ul —k,u, =F

. . . )
mu- U+ U~k u+ku,=F, -F
Rermembering that:
aG[s(w)] u,=F, and u, =u, (10)

andsubstituting egs. (10) into eq. (9), one can conclude that:

{ml 0}{”1}4_[((:14'02) _CZ}{ul}+|:(ki+k2) —k, :Hul}:{l:l} (11)
0 m, (U, -G G, u, -k k + aG%[S(w)] u, F,
Based on Eq. (11), it is possible to conclude that the soil affects the structure stiffness and it can be seen by the soil
compliance added to the structure DOF in contact to it in the global stiffness matrix.
5. RESULTS
5.1.Validation example: bar-beam element analysis
In order to validate the BEM-FEM code developed, one example is analyzed. Fig. 7 shows a cantilever beam, whose

mesh contains 20 finite elements, supported by a foundation bonded to the soil with all theirs geometrical characteristics
and material properties.
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Cantilever properties Foundation- soil properties
L=2m a=1m

A=0.25mM Gsoi = 1 Pa

| =5.208 10°' m" Veoi = 0.25

E=210.10 Pa Ossil = 1 kgint

© = 7800 kg/m Nssit = 0.05

soil (half-space)

Figure 7. Cantilever beam supported by a foundation bonded to the soil.

Table 1 shows the first three analytical eigenfrequencies for the cantilever beam, without interacting with the soil,
both in the axial and transversal direction:

Table 1. Cantilever eigenfrequencies.

Axial Transversal
a, = 4075rad/s a, = 658rad/s
w, =12225rad/s w, = 4125rad/s
w, = 20376 rad/s w, =11552rad/s

Figures. 8a and 8b show the Frequency Response Function (FRF) of the cantilever beam, both in the axial and
transversal directions respectively. This structure also presents as the rigid-body axial eigenfrequency the analytical

value @, = 192rad/s. This last value is used to determinate the cantilever beam first eigenfrequency under the
soil-foundation interaction.
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Figure 8. a) Cantilever beam FRF (axial); b) Cantilever beam FRF (transversal).
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5.2. Flat Frame Building Plane Structure
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Since the former results are according to the literature, it is possible to evaluate the dynamic behavior of a generic
frame-foundation-soil system, like the flat frame building presented in Fig. 9, which simulates the wind effect.
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Figure 9. Flat frame building interacting with soil-foundation.

Figures. 10a and 10b show the frame FRF, for 18 and 27 elements for both cases where the structure is fixed over a
rigid base as well interacting with the soil-foundation. The point considered to build the FRFs is located at the upper left

corner
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Figure 10. a) Frame FRF (18 elements); b) Frame FRF (27 elements).

By analyzing Fig. 10a and 10b, the first aspect to notice is related to meshes convergence: results for 18 and 27
elements are very close. The second aspect is related to the soil coupling: the peak and the value of eigenfrequencies

decreased, which was expected according to

6. CONCLUSIONS

literature.

The paper analyzes the influence of soil on the dynamic response of frame-foundation systems. In this study two
distinct frame models have been considered. Initially, a frame with a known analytical behavior coupled to a rigid
foundation bonded to a 3D half-space was considered just to validate the code. The second analysis deal with a flat
frame building with the same coupling considered before simulating the wind effects.
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Both analysis considered BE and FE convergence meshes as well the structures modal analysis without considering
the soil effects. Finally the BEM-FEM coupling was developed to evaluate the frame-foundation-soil system behavior.

A more detailed analysis of the system response must be performed. However, the BEM has shown to be an
efficient and versatile numerical tool to synthesize the dynamic response of unbounded domains.
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