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Abstract. Coordinate Measuring Machines (CMMs) are fast, accurate, flexible, versatile and allow a reliable quality 
control. Nevertheless, their performance has been limited by several factors and consequently, the evaluation of 
measurement uncertainty is very difficult. This work aims to assess the uncertainty associated with measurements on a 
CMM using Monte Carlo simulation. During the simulation the software Oracle Crystal Ball and Excel were used. At 
the same time, a study  was performed to determine the influence of the number of iterations in the quality of the 
simulation results. The work was carried out according to the following steps: i) study and analysis of the Monte Carlo 
method; ii) planning and carrying out measurements; iii) identification of the variables that influence in the 
determination of dimensional and geometry characteristics; iv) adoption of a simplified mathematical model to the 
measurement process; v) simulation and estimation of measurement uncertainty. It was concluded that to evaluate the 
measurement uncertainties in the CMM, under the conditions of this study, 300,000 iterations were sufficient to obtain 
reliable results. Furthermore, the number of iterations used during simulation remarkably influences the shape of the 
distribution and consequently its statistical parameters and the value of the measurement uncertainty. 
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1. INTRODUCTION 

 
The need to quantitatively indicate the quality of a measurement result led to the establishment of criteria to 

determine the value that represents the measurement uncertainty. Measurement uncertainty is defined as a non-negative 
parameter that characterizes the dispersion of the values attributed to a measurand based on the information used (BIPM 
et al., 2008). This parameter can be considered an indicator of the performance of measuring instruments and the 
reliability of the measurement result. The evaluation and statement of the uncertainty contribute to the traceability of 
values and the suitability of measurements to the current technical standards. 

If uncertainty is not declared, the measurement results cannot be compared, either among themselves or with 
reference values given in a specification or standard. It is therefore necessary to have a procedure readily implemented, 
easily understood and widely accepted to characterize the quality of a measurement result, that is, to evaluate and 
express its uncertainty (ISO TAG 4/WG 3, 2008). 

The understanding of ISO TAG 4/WG 3 (2008) is not a simple task, its interpretation and correct application require 
specialized technical training. The methodology presented in this document can be applied only to those cases where it 
is possible to formulate a mathematical model to describe the output variable as a function of the input variables. The 
attainment of such a model is not always an easy task (Nielsen, 2006). The main cause of this is often in the complexity 
of the measurement system in question, the lack of knowledge about its operating principle, measurement errors and 
their sources. In this sense, Sommer and Siebert (2006) highlight the importance of identifying the influence quantities 
for the proper development of the measurement model, since the establishment of this mathematical model is essential 
for determining the values of the associated uncertainty. 

Also it can be added that if the mathematical model, which describes the functional relationship between the input 
and output variables of a given measuring system is complex, as in measurement with Coordinate Measuring Machines 
(CMMs), the calculation of partial derivatives that represent the coefficients of sensibility, becomes extremely 
laborious. This can lead to the appearance of miscalculations and has been one of the main factors for not adopting the 
methodology proposed in ISO TAG 4/WG 3 (2008).  

In the specific case of the CMMs, this can be justified due mainly two factors. Firstly the large number of variables 
that can contribute to the uncertainty of measurement (Wilhelm et al., 2001) leading to complex mathematical models 
of measurement such as (Hocken et al., 1977;  Guye, 1978; Zhang et al., 1985; Cardoza, 1995; Piratelli, 1997; Di 
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Giacomo, et al., 1999; Hermann, 2007). Second and no less important, the machine versatility also contributes to the 
complexity of the model, since it allows the measurement of several metrological features of a workpiece (Balsamo et 
al., 1999). These factors can increase the difficulty to evaluate measurement uncertainty in CMMs, as shown in (Vieira 
Sato, 2003; Miguel, et al., 2003; Valdés, et al., 2005 and Abackerli, et al., 2010). 

From the foregoing, it can be concluded that the application of the method of propagation of uncertainty becomes 
too limited to ensure reliable results in many real situations. Thus, in 2008, was published a document entitled 
“Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in measurement - 
Propagation of distributions using a Monte Carlo method” (BIPM  et al., (2008b), in which the main objective is to 
increase the scope of ISO TAG 4/WG 3 (2008). 

According to the BIPM  et al., (2008b), the method of evaluation of uncertainty proposed by ISO TAG 4/WG 3 
(2008) presents some applicability limitations, such as: it is appropriate for explicit models with only one output 
variable. Models less frequent, as those with multiple outputs, complex variables or implicit functions are not detailed 
in the ISO TAG 4/WG 3. In addition, the mathematical model describing the measurement process must be linear and 
the output variable must have a normal distribution. 

The document JCGM 101 (2008) is based on Monte Carlo simulation and is free of most of the limitations of ISO 
TAG 4/WG 3 (2008) and it does not contradict the recommendations presented in it (Cox and Harris, 2003).  

The method discussed uses computer simulations where the probability distributions of the input variable are 
propagated (Balsamo et al., 1999 and Schwenke et al., 2000). The input information for the application of the Monte 
Carlo method are almost the same as those used in the approach of the ISO TAG 4/WG 3 (2008), in other words, it 
starts from a mathematical problem describing the measurand from the input variable and their statistical information. 
The fundamental difference is that the statistical input used in the ISO TAG 4/WG 3 (2008) are basically the mean, 
standard deviation, and the degrees of freedom of each distribution. In the Monte Carlo method the very Probability 
Density Functions (PDF) of input distribution are used, providing more complete information on these distributions. 
With these informations it is possible to simulate the distribution of values of the output quantity where it is possible to 
obtain the associated uncertainty. 

The simulation is performed simply in different software such as Crystal Ball and Mathematica. However some 
authors prefer to use Excel to this purpose, including: Piratelli and Di Giacomo (2003). Note that Excel 2007 makes it 
possible to work with up to 1,000,000 lines, overcoming a limitation of Excel 2003, whose limit was 65,000 lines. This 
create new application possibilities. Therefore, this work aims to apply the Monte Carlo method to evaluate the 
uncertainty associated with measurements taken on a Coordinate Measuring Machine using the software Oracle Crystal 
Ball. At the same time a study was performed to determine the influence of the number of iterations in the quality of 
simulation results, as well as, evaluate the potential of Excel 2007 to perform the calculation of measurement 
uncertainty through Monte Carlo simulation.  
 
2. METHODOLOGY 

 

Several dimensional and geometric features of a part (diameter and circularity deviation (Hole 1), distance between 
two points (center of Hole 2 and 3), diameter (Sphere 4) and flatness deviation (Surface 5)) (Fig. 1a) were measured 
using a manual Coordinate Measuring Machine, type moving bridge (Fig. 1b). 

This machine, model BR443, was manufactured by Mitutoyo and it is manually operated. The machine resolution is 
0.001 mm and the work volume is 400 mm (Axis X), 400 mm (Axis Y) and 300 mm (Axis Z). The management of the 
measurement task is carried out by a computer program, the Geopak-Win. According to the calibration certificate, the 
CMM used in the measurements has linear expanded uncertainties of (1.2 + L/1300) μm and k = 2.2 for the X axis; of 
(1.2 + L/1300) μm for the Y axis; and of (1.0 + L/1300) for the Z axis. The probing error is 2.9 μm.  

To obtain the diameter and the circularity deviation of the Hole 1, 13 points were determined in a cross section of 
the feature evaluated. In turn, the flatness deviation of Surface 5 was determined taking 13 points. In order to find out 
the distance between the centers of Hole 2 and Hole 3, four points were determined at each one. Finally, to obtain the 
diameter of the Sphere 4, 5 points were determined. In all cases, five measurement cycles were performed. 

The measurement process was conducted with controlled temperature of 20±1°C. To achieve the thermal 
equilibrium, the machine, the workpiece and the measuring devices were exposed during to the reference temperature 
for 12 hours. The temperature was monitored using a thermo-hygrometer with nominal range of -20ºC to 60ºC and 
resolution of 0.1ºC. Afterwards, the Monte Carlo method was applied to the calculation of the associated 
uncertainty. Therefore, it was used the program Oracle Crystal Ball V.11.1.1.1.00 and the Excel 2007. 
 

2.1 Identification of the influence variables 

 

The following influence variables were considered: variability of the measurand values; CMM resolution; standard 
uncertainty associated with the CMM calibration, in the directions considered during the measurements; error of the 
CMM probing system; temperature variation during measurement and distancing of the temperature in relation to 20 °C. 
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Figure 1 - Measured part (a) and Coordinate Measurement Machine used in the experiments (b)  
 

2.2 The mathematical model 

 

Then it was proposed a mathematical model for each evaluated characteristic, dimensional or geometric: 
a) Distance between two points 

The distance (D) between two points, )Z,Y,X(P 1111   and )Z,Y,X(P 2222  is given by Eq. (1).  
  

       2
12

2
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2
1221 ZZYYXXP ,PD                                                                   (1) 

 
It was necessary to include in the mathematical model the variability associated with the values of the distance 

between two points considering the N cycles, according to Eq. (2).  
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1221 PP)D(sZZYYXX)D(s)P ,P(D                                                    (2) 
 
The Equation (2) takes into account the variability of the distance between two points (∆s(D)), considering the N 

measurement cycles and the corrections associated with the coordinates of two point, P1 and P2.  
 
b) Flatness Deviation 

During the measurement in the used CMM, the value of the flatness deviation is determined from a plan set to the n 
points probed (n>3) and whose coordinates (X, Y and Z) were collected using the program Geopak-Win. Therefore it is 
used the Least Squares Method, as shown in Eq. (3) (Vieira Sato, 2003). 

 
YX 210                                                        (3) 

 
Where π represents the plan set to the n points probed and β0, β1 and β2 are the coefficients of least squares. 
Hereafter the program calculates the distance Di for each point  iiii Z,Y,XP   to the plan   adjusted. Since the 

distance between the points  maxmaxmaxmax Z,Y,XP   and  minminminmin Z,Y,XP   to the plan   is given by Eqs (4 and 5) 
(Vieira Sato, 2003): 

b b 

X 
-Y 

Z 
0 
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Finally, the flatness deviation is determined by Eq. (6). 
 

minmaxPl PPD                                                                                                             (6) 
 
Where DPl represents the flatness deviation and Pmax and Pmin the furthermost points higher and inferiorly to the 

plane π. Adding to the mathematical model the variability associated with the flatness deviation values considering the 
N cycles is obtained using Eq. (7).  

 
minmaxPlPl PP)D(sD                                                                                                                                        (7) 

 
Where ∆s(DPl) is the variability of the flatness deviations considering the N measurement cycles and the corrections 

associated with the furthest point superiorly in relation to the plane ( maxP ) and the furthest point inferiorly from the 

plane ( minP ). 
 
c) Hole Diameter 

The Equation (8) allows to calculate the radius of the circle, considering n points (n≥3).  
 

   2
c

2
c YYXXr                                        (8) 

 
where  cc Y,X  represents the coordinates of the center of the circle and r is its radius. 

Adding on Equation (8) the variability associated to the values of the diameter considering the N cycles performed 
(∆s(d)), the Eq. (9) is obtained.  

 

   2
c

2
c YYXX2)d(sd                                                                                                                             (9) 

 
d) Circularity Deviation 

To calculate the circularity deviation it is necessary to determine the distance (Di) for each point Pi  to the centre of 
the circle (PC), identifying which points are most (Pmax) and less (Pmin) away from the point PC. 

The circularity deviation is given by the difference between the two distances, Eq. (10). 
 

minmaxCIR PD P-                                                                                                                                                       (10) 
 
Adding on Equation (10) the variability associated to the values of the circularity deviation to the N cycles 

performed (∆s(DCIR)), Eq. (11) is obtained.  
 

minmaxCIRCIR PP)D(sD                                                                                                                                         (11) 
 
e) Sphere Diameter 

The sphere diameter or similarly the sphere radius can be determined from the Eq. (12). 
 

 2
c

2
c

2
c ZYXR                                                         (12) 

 
Adding on Equation (12) the variability associated to the values of the sphere diameter to the N cycles performed 

(∆s(DE)), Eq. (13) is obtained.  
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f) Coordinates X, Y and Z of the probed points 

To determine the uncertainty associated with each coordinate (X, Y and Z) of any point P, probed during the 
measurement is used the following mathematical model. 

 
).(T.c).(T.cEICRC MMPeiMMPeiACiMMi                                                                          (14) 

 
Where: ci is the coordinate X, Y or Z considered; MMR  is the correction associated to the CMM  resolution; CiIC  

is the correction due to the standard uncertainty associated with the CMM calibration; AE  is the correction due to the 
errors of the CMM probing system; T  is the corrections due to temperature variation during measurement; T  is the 
corrections due to the distancing of the temperature in relation to 20°C; MM  is the coefficient of linear thermal 
expansion of the CMM scales (glass) and Pe  is the coefficient of linear thermal expansion of the material of the 
workpiece (bakelite). 

 
2.3 Identification of the PDFs for the input variables 

 

An important step for the evaluation of uncertainty using Monte Carlo method is the identification of the PDFs to be 
assigned to each of the input variables present in the mathematical model of the measurement. Being that, in this work, 
to the variables variability of the measurand, distancing of the temperature in relation to 20°C and standard uncertainty 
associated with the CMM calibration, a normal distribution was adopted. To the variables, CMM resolution, thermal 
expansion coefficients and temperature variation was adopted the rectangular distribution and for the probing error the 
triangular distribution. From the available information about each input variable, the parameters that characterize each 
of the distributions were determined. 
 
2.4 Calculation of the standard uncertainty associated with each input variable 

 

The values of the measurand are characterized by a normal distribution and can be calculated by Eq. (15). 
 

n
s)me(u

2



                                      
(15) 

 
Where me is the measurand considered. 
The uncertainty associated to the resolution can be considered as an evaluation of type B, because it cannot be 

estimated statistically. In this case, a rectangular distribution and the uncertainty is given by Eq. (16) was assumed. 
 

3
solutionRe  CMM)R(u MM 

                                     
(16) 

 
For linear measurements the standard uncertainties associated to the calibration of the CMM are expressed by Eq. 

(17) to (19). 
 
 

k
UIC Px

MM(x) 
              

(17)  

 

k
U

IC Py
MM(y) 

              
(18)  

 

k
UIC Pz

MM(z) 

              
(19)  

 
If the measurement is performed in the plane XY, XZ or YZ, then, the Eq. (20) to (22) must be used, respectively. 

 
2

(y)MM
2

MM(x)y)MM(x, ICICIC 
             

(20)  
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2

MM(z)
2

MM(x)MM(x,z) ICICIC               (21)  

 
2

MM(z)
2

MM(y)MM(y,z) ICICIC               (22)  
 

While for volumetric measurements, the uncertainty associated with the calibration of the machine considers the 
declared uncertainty for the three coordinate axes, as in Eq. (23). 

 
2

MM(z)
2

MM(y)
2

MM(x)y,z)MM(x, ICICICIC 
                

             (23)  
 

The standard uncertainty associated with the error of the CMM probing system is given by Eq. (24), considering a 
triangular probability distribution. 

 

6
E)E(u A

A 

              
(24) 

 
The standard uncertainty associated with the difference between coefficients of thermal expansion of the scale and 

workpiece is given by Eq. (25). 
 

3
)(01.0)(u EP 
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

                                                                                                                                           (25) 

 
Where αE is the coefficient of thermal expansion of the scale (glass) and αp is the coefficient of thermal expansion of 

the workpiece (bakelite). 
For the distancing of the temperature in relation to 20 °C (ΔT20), the standard uncertainty is determined using Eq. 

(26). 
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where ΔT is the difference between the room temperature and 20 °C; ΔRT is the correction in relation to the 
thermometer resolution and ΔIT is the uncertainty associated with the thermometer indication system. 

The uncertainty due to temperature variation during measurement is given by Eq. (27). 
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2.5 Determination of the number of iterations M 

 

Having  the necessary data to the simulation, pre-trials aiming to determine the number of iterations for each case. 
For this, it was used the program Oracle Crystal Ball V.11.1.1.1.00. The value of M was varied assuming the following 
values: 10,000, 50,000, 100,000, 300,000, 500,000 and 1,000,000. Completed the simulation, the vectors for each input 
variable were substituted into the corresponding equation and the vector of values of the output variable were obtained. 
Then, the expanded uncertainty was determined for a range of 95.45 %. As stopping criteria were used the following 
aspects: obtaining a distribution with normal shape for the output variable and asymmetry coefficient value close to 
zero. 

 
2.6 Determination of the standard uncertainty 

 
From the PDF of the measurand it is determined the value of uncertainty associated with the output variable. 

Therefore, the following steps should be followed. 

ISSN 2176-5480

4441



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

a) Discrete representation of the function distribution for the output variable: The discrete representation of the 
PDF for the output variable Y can be obtained according to the following procedure: 

 Classify the M values of Y provided by the Monte Carlo method in ascending order. Denote the classified 
values of the model by y(r), r = 1, ..., M; 

 If necessary, do small numerical perturbations for any replicated value so that the overall result of y(r), r = 1, 
..., M, form a strictly increasing sequence; 

 Take the PDF of the output variable as the set y(r), r = 1, ..., M. 
The function y(r), when in a form of histogram and with appropriate width classes, form a distribution of 

frequencies that, when normalized to have unit area, provides an approximation of the PDF for Y. This histogram 
can be useful helping in the comprehension of the nature of the PDF, as in the extension of its asymmetry. 

b) Estimative of the output variable and the associated standard uncertainty 

In this step the arithmetic mean and the standard deviation of the output variable are calculated. The mean is 
considered as an estimate y from Y and the standard deviation represents the standard uncertainty u(y) associated to y. 

c) Range of coverage for the output variable 
If the final distribution of all calculated values of the measurand is normal and the value of symmetry (skewness) is 

close to zero, from the concept of a standard normal distribution and for a desired coverage probability, it is possible 
then to define the upper and lower limits of the PDF of the measurand values, having the values of mean and standard 
deviation, usually the chosen coverage probability is 95.45%, which expanded uncertainty is defined by Eq. (28). 

 
    2/LL2k%;45,95pU is                                       (28) 

 
where Ls is the upper limit of the interval and Li is the lower one. 

The range of coverage for Y can be determined from the discrete representation of the PDF. Then the value of q 
must be determined using Eq. (29). 

 
pMq                                          (29) 

 
where p represents the probability and M the number of iterations. 

Equation (29) is valid only when q is an integer. Otherwise, q is given by Eq. (30). 
 

21pMq                                         (30) 
 
Thus, the interval defined by [yinitial, yfinal] has a range of 100%. 

 
2.7 Uncertainty evaluation using Excel 

 
Finally proceeded the evaluation of the uncertainty using the Excel 2007. The results were compared with those 

found previously, using the program Oracle Crystal Ball V.11.1.1.1.00. This comparison considered among other 
aspects, the number of iterations required for the simulation, simulation time, shape of the distribution of the output 
variable, degree of asymmetry of the distribution and the value of the expanded uncertainty. 

 
3. RESULTS AND DISCUSSION 

 

The results obtained during the measurement, from which was evaluated the uncertainty using the Monte Carlo 
method, can be seen in Table 1. 

 
Table 1. Results of measurement. 

 
Characteristic L1 (mm) L2 (mm) L3 (mm) L4 (mm) L5 (mm) Mean (mm) Standard 

Deviation 
(mm) 

Hole Diameter 67.915 67.911 67.914 67.916 67.916 67.914 0.002 
Circularity Deviation 0.078 0.085 0.089 0.078 0.089 0.084 0.006 

Flatness Deviation 0.032 0.030 0.036 0.030 0.032 0.032 0.003 
Distance between two 

points 
28.944 28.953 28.950 28.941 28.949 28.947 0.005 

Sphere Diameter 20.072 20.160 20.186 20.185 20.113 20.143 0.050 
 

ISSN 2176-5480

4442



L.F.M. Almeida, R.V. Arencibia, S.D. Franco, and A. Piratelli-Filho 
Three-dimensional uncertainty evaluation applying Monte Carlo method 

From Table 1 it follows that the values of standard deviation found for the first four characteristics measured are 
small. However, the standard deviation associated with the measurement of the diameter of the sphere is high, assuming 
the value of 0.050 mm. This can be explained, firstly, because the measurement strategy was not adequate, specifically, 
the number of points probed. Secondly, because the measurement of the sphere is more complex when compared to the 
other measured characteristics, once the probe tip tends to slip when in contact with the surface is evaluated.  

Table 2 presents the values of expanded uncertainty associated with the measurement of the diameter of the sphere 
and obtained for different values of iterations. It is also presented the statistical parameters that describe the shape of the 
distribution of the output variable. 

 
Table 2. Parameters of the output variable distribution for the simulations (sphere diameter). 

 
Number of iterations Expanded Uncertainty 

(mm) 
Asymmetry Coefficient 

(Skewness) 
Flattening Coefficient 

(Kurtosis) 
10,000 0.0442 -0.0703 3.06 
50,000 0.0444 -0.0119 3.04 

100,000 0.0444 -0.0044 3.01 
300,000 0.0446 -0.0032 3.00 
500,000 0.0446 -0.0036 3.00 

1,000,000 0.0446 -0.0024 3.00 
 
In Table 2 was observed that the number of iterations considered during the Monte Carlo simulation influences the 

value of the expanded uncertainty associated with the measurement insignificantly. For M≥300,000 the expanded 
uncertainty did no change. Note in Table 2 that for a coverage probability of 95.45 % the value of uncertainty shows a 
slight increase of 0.4 µm when the number of iterations increases from 10,000 to 1,000,000. It was observed, 
furthermore, that the values of the asymmetry coefficient decrease significantly with the increasing of the number of 
iterations, indicating that for lower values of M the shape of the output variable distribution deviates from the normal 
distribution, as shown in Figure 2. It was observed that for 10,000 iterations the output variable distribution has a 
flattening coefficient or kurtosis higher than 3, indicating that it is slightly more tuned than the standard normal 
distribution. With the increase of the number of iterations, the kurtosis tends to 3.00 and from 300,000 it undergoes no 
change. 

Figure 2 shows the graphs that illustrate the output variable distribution considering different values of M during the 
simulations performed to determine the measurement uncertainty of the diameter of the sphere. The results for the other 
measured characteristics are not presented here because they are similar. 

The influence of the number of iterations in the format of the output distribution is clearly observed in the 
histograms shown in Figure 2. For 10,000 and 50,000 iterations the shapes of the distributions differ greatly from the 
normal and, therefore are not adequate for the evaluation of the measurement uncertainty. From 300,000 iterations it is 
no longer possible to observe significant changes in the distribution shapes, being this number of iterations sufficient to 
estimate the uncertainty associated with the measurement.  

A similar analysis was performed for all measured characteristics. In all cases the distribution of the calculated 
values of the measurand is normal and the value of the symmetry coefficient (skewness) is close to zero. 

Table 3 briefly describes the values of expanded uncertainty obtained for a range of 95.45 % of all measured 
characteristics, as well as the number of iterations from which this value is stable and reliable. 

As expected, the expanded uncertainty values associated with the measurement of the first four characteristics are 
small and vary between 0.004 mm and 0.006 mm. While the expanded uncertainty associated with the measurement of 
the diameter of the sphere is 0.045 mm, it is noteworthy that the largest parcel of contribution to the final uncertainty, in 
this case, was the variability associated with the values of the measurand. Then it was performed the Monte Carlo 
simulation using Excel 2007. The graphs that illustrate the distribution of the output variable of all characteristics are 
shown in Figure 3. The number of iterations performed in each is shown in Table 3. 
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Figure 2 – Histograms of the output variable for each simulation. 
 

Table 3. Number of iterations and measurement uncertainty. 
 

Characteristic Number of 
iterations 

Asymmetry 
coefficient  

Expanded 
Uncertainty (mm) 

Hole Diameter 100,000 -0.0035 0.004 
Circularity Deviation 200,000 -0.0034 0.006 

Flatness Deviation 200,000 -0.0019 0.004 
Distance between two points 300,000 0.0049 0.006 

Sphere Diameter 300,000 -0.0032 0.045 
 
Figure 3 shows that in all cases the shape of the output distribution can be considered normal. The asymmetry 

coefficient is close to zero and assumes values of 0.0113; -0.0095; -0.0039; 0.0002 and 0.0026, respectively. The most 
time consuming step, during the simulation using Excel, was the one relative to the determination of the number of 
elements present in each class (frequency) to build the histogram. In this work conditions, considering 300,000 
iterations were consumed on average 47 seconds. It is noteworthy that the simulation was performed using a HP 420 
notebook. 
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Figure 3 – Histograms of the output variable for all characteristics, using Excel. 

 
The expanded uncertainty values associated with the measurement, obtained using Excel are shown in Figure 4. For 

comparison purposes are shown also the uncertainty values obtained when using the program Oracle Crystal Ball 
V.11.1.1.1.00. 
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Figure 4 – Expanded uncertainty (95.45%). 
 
It is observed in Figure 6 that the expanded uncertainty values obtained using the Excel application are equal to or  

slightly smaller than those found by the program Oracle Crystal Ball V.11.1.1.1.00 for all geometries evaluated. The 
largest difference was found for the hole diameter being of 0.001 mm. 

 
4. CONCLUSION 

 

To evaluate the uncertainty associated with measurements in a CMM, in this work conditions, 300,000 iterations 
were enough to obtain reliable results. The time spent in the simulation was approximately 20 seconds with the program 
Oracle Crystal Ball V.11.1.1.1.00.  

Microsoft Excel 2007 was found to be appropriate to perform the Monte Carlo simulation in this work conditions, 
providing expanded uncertainty values similar to those obtained when using the program Oracle Crystal Ball 
V.11.1.1.1.00. The most time consuming step using Excel was the determination of the number of elements present in 
each class (frequency), that was found to be on average 47 seconds. 

Simulations considering more than 300,000 iterations don’t bring any further benefit. It only increases the time spent 
on the simulation and the computational effort. 

 
5. ACKNOWLEDGEMENTS 

 
The authors are grateful to FAPEMIG/Brazil and CAPES/PROEX for financial support. 

 
6. REFERENCES 

 
Abackerli, A.J., Pereira, P.H., Calônego, Jr.N., 2010, “A case study on testing CMM uncertainty simulation software 

(VCMM)”. J. Braz. Soc. Mech. Sci. & Eng., 2010, Vol. 32, No. 1, pp.8-14. 
Balsamo A,M. Di Ciommo, R. Mugno, B.I. Rebaglia, E. Ricci, R. Grella, 1999, “Evaluation of CMM uncertainty 

through Monte Carlo simulations” Annals of the CIPR 48(1). pp. 425-428. 
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, 2008a, “International vocabulary of metrology - Basic and 

general concepts and associated terms (VIM)”. 104p. 
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, 2008b. JCGM 101 - Evaluation of measurement data - 

Supplement 1 to the Guide to the expression of uncertainty in measurement - Propagation of distributions using a 
Monte Carlo method, 90p. 

Cardoza, J.A.S., 1995, “Máquinas Virtuais de Medir a Três Coordenadas”, Tese (Doutorado), EESC-USP. 
Cox, M. and Harris, P. (2003). The GUM and its planned supplemental guides, Accred Qual Assur 8(4): 375–379. 
Di Giacomo, B., Orrego, R.M.M., Viera Sato, D.P., 1999, “An exploratory study about the second order errors in 

mathematical models of coordinate measuring machines”. Mfg the Brown Sharpe Publication of Precision 
Manufacturing, EUA, Vol. 6, No.1, p.26. 

Guye, J.J., 1978, “Metrological inspection of machining centers, jig boring machines and measuring machines through a 
statistical approach, Sociéte Genovice d’Instrumets de Physique, Geneva, pp.141-145. 

Hermann, G., 2007, “Geometric Error Correction in Coordinate Measurement” Acta Polytechnica Hungarica, Vol. 4, 
No. 1, pp. 47-62. 

ISSN 2176-5480

4446



L.F.M. Almeida, R.V. Arencibia, S.D. Franco, and A. Piratelli-Filho 
Three-dimensional uncertainty evaluation applying Monte Carlo method 

Hocken, R.J., Simpson, J.A., Borchardt, B., Lazar, J., Reeve C. and Stein, P. 1977 “Three Dimensional Metrology”. 
Annals of CIRP, Vol. 26, No. 2, pp. 403-408. 

ISO TAG 4/WG 3, 2008, “Guide to the Expression of Uncertainty in Measurement”, Geneva Switzerland, 131 p. 
Miguel, P.A., Cauchick, King, T., Abackerli, A.J., 2003, “CMM touch trigger performance verification using a probe 

test apparatus”. J. Braz. Soc. Mech. Sci. & Eng., Vol. 25, No. 2, pp.147-153. 
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR NM-ISO 1: “Temperatura padrão de referência para 

medições industriais de comprimento”, 1997. 2p.  
Nielsen, H.S. 2006. “Some limitations in uncertainty evaluation”. Indianápolis. Artigo disponível em http://www.hn-

metrology.com/papers.htm. Consultado em 19 de março de 2013. 
Piratelli Filho, A.; Di Giacomo, B. “Uncertainty evaluation in small angle calibration using ISO GUM approach and 

Monte Carlo Method”. XVII IMEKO World Congress Metrology in the 3rd MILLenium. June 22-27, Dubrovnik, 
Croatia. 2003. 

Piratelli-Filho, A., 1997, “Método para avaliação do desempenho de máquinas de medir a três coordenadas através do 
planejamento de experimentos”. Tese (Doutorado) – Escola de Engenharia de São Carlos, Universidade de São 
Paulo, São Carlos, 225 p. 

Sommer, K. D. and Siebert, B. R. L. (2006). “Systematic approach to the modelling of measurements for uncertainty 
evaluation”, Metrologia 43(4): S200–S210. 

Valdés, R.A., Di Giacomo, B., Paziani, F.T., 2005, “Synthesization of thermally induced errors in coordinate measuring 
machines”. J. Braz. Soc. Mech. Sci. & Eng., Vol.27, No.2, pp.170-177. 

Vieira Sato, D.P., 2003, “Determinação da Incerteza de Medição a Três Coordenadas”, Universidade de São Paulo, S. 
Carlos, Brazil. 71 p. 

Wilhelm, R., Hocken, R., Schwenke, H., 2001, “Task specific uncertainty in coordinate measurement”, CIRP Annals-
Manufacturing Technology, Vol. 50, No.2, pp. 553-563. 

Zhang, G., Veale, R., Charlton, T., Borchard, B., Hocken, R., 1985, “Error compensation of coordinate measuring 
machines”. Annals of the CIRP, Vol. 34, No.1, pp. 445-448. 

 
7. RESPONSIBILITY NOTICE 

 
The authors are the only responsible for the printed material included in this paper. 

ISSN 2176-5480

4447




