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Abstract.The control of a helicopter is a complicated task, due to the nonlinearities in his actuators and also to the
presence of environmental effects that makes the system unstable. Because of these instabilities, it is necessary to use
a control algorithm that helps to improve the systems perfomance, ensuring stability and robustness. The objective of
this work is to develop a control algorithm that allows the helicopter to mantain in hover flight, controlling its attitude
and altitude. In order to achieve this objective, the project was divided in three steps. In the first step, a non-linear
dynamical model was developed, which describes the total behavior of the helicopter. Using aerodynamic constants from
experimental data of wind tunnels were calculated parameters such as drag coefficient, thrust force, center of gravity and
helicopter weight. In the second step was calculated the control law applying a LQR control strategy in order to stabilize
the attitude and altitude of the helicopter. Then some simulations were made to verify the response of the linear controller
and the no linear dynamic model of the helicopter, using a continuous time model. In the final step, a simulation was
developed using the discretized linear controller, and the responses were compared with the continues controller model.
Finally the discretized controller was implemented in an electronic board located on the helicopter. The results are
presented in the simulations of the controller-system continues model, then comparisons were made with respect to the
responses of the discretized controllers and the real helicopters controller.
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1. INTRODUCTION

Helicopters are a useful equipments because of their ability to make take-offs and landings without the use of a
big infrastructure. This work will focus on the theory to develop a controller for stabilizing a coaxial helicopter. This
helicopter is composed of three rotors as seen in figure 1.. Two working as main rotors and a third one in the tail. The two
main rotors, rotate in opposite direction to compensate the torques generated from each other. The third rotor can rotate
in both directions and generates a little thrust so the helicopter can tilt on its pitch.

This document will first describe the dynamics of the helicopter, then it will summarize the LQR control design and
its discretization, and finally will show some of the result of the performance of the helicopter.

Figure 1. Helicopter

2. DYNAMICS

The dynamics of the helicopter are going to be affected by the behavior of the main rotor, because is who generates
most of the forces and torques over the helicopter. In this work each of the contributions of the forces will be described.
To calculate the dynamics of the helicopter it is necessary to define the Frames that will be used.

Three frames were defined, two on the COG (Center of Gravity) of the helicopter, call it the Body frame (BF) and the
Spacial frame (SF) and the third one as the Inertial frame (IF). The BF will be oriented equal as the IF, and the SF will be
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oriented with the movements of the helicopter.

Figure 2. Frames on Helicopter Dynamics

2.1 Rigid Body Equations

Considering the helicopter as a rigid body it is possible to apply Newton’s Second law, to calculated velocities and
accelerations (Ulrik Bech Hald, 2005). To define each of the acceleration and velocities it is necessary to stablish the
relation between the frames, so in equation 1 it is described the relation between the BF and the IF, based on the rotation
matrices shown in Bruno Siciliano (2009).

RB,I(φ, θ, ψ) =

 cos(θ)cos(ψ) −cos(θ)sin(ψ) sin(θ)
sin(φ)sin(θ)cos(ψ) + cos(φ)sin(ψ) −sin(φ)sin(θ)sin(ψ) + cos(φ)cos(ψ) −sin(φ)cos(θ)
−cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ) cos(φ)sin(θ)sin(ψ) + sin(φ)cos(ψ) cos(ψ)cos(θ)

 (1)

Another important relation is between the euler angles rate and the angular velocity, in equation 2, that will gives
the orientation of the helicopter at all time. This equation will introduce some limitation to the model because to the
singularity when the pitch angle is π/2 or −π/2.

 p
q
r

 =

 1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 −sin(φ)

cos(θ)
cos(φ)
cos(θ)

 φ̇

θ̇

ψ̇

 (2)

2.1.1 Accelerations

The translational in equation 4 and rotational accelerations in equation 3 are described both on the BF. The first will
depend of the Forces acting on the helicopter due to the main rotors thrust and external forces and parameters as the mass
m. The rotational accelerations will depend of the torques and parameters as the Inertial Momentum.

ẇ =

 ṗ
q̇
ṙ

 =


q·(Iyy−Izz)·r+L

Ixx
−p·(Ixx−Izz)·r+M

Iyy
N+p·q(Ixx−Iyy)

Izz

 (3)

V̇ =

 r · v − q · w + Fx

m

−r · u+ p · w − Fy

m

q · u− p · v + Fz

m

 (4)

2.2 Forces and Torques

Four main forces were defined in the dynamics of the helicopter, first the ones generated from the two main rotors,
then the tail rotor thrust and finally the gravity force.

Ftotal = FUpR + FDwR + FTR + Fg (5)

Ftotal =

 −TUpRsin(β)
TUpRsin(α)

−TUpRcos(α)cos(β)

+

 0
0

−TDwR

+

 0
0

−TTR

+

 mg · sin(θ)
−mg · sin(φ)cos(θ)
mg · cos(φ)cos(θ)

 (6)
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Figure 3. Helicopter Forces

To describe the total torque, this was divided in five torques (Medina, 2013). The first two torques are generated
because of the rotation of the rotors. Another two torques generated in the main rotors are the drag due to the influence of
the incident air to each of the blades. And finally the torque generated by the tail rotor.

τtotal = (τDwR − τDDw)− (τUpR − τDUpR) + τTR (7)

τtotal =


 −TDwR · YDwR

LDwR · TDwR
0

−

 0
0

QDwR

−


 −cos(α)cos(β)TUpRYUpR − sin(α)HUpRTUpR

−sin(β)HUpRTUpR + cos(α)cos(β)LUpRTUpR
sin(α)LUpRTUpR + sin(β)TUpRYUpR

−

 QUpRsin(β)
−QUpRsin(α)

QUpRcos(α)cos(β)

+

 −TTR · YTR
LTR · TTR

0

 (8)

Where the terms Y,H and L correspond to distances from the COG to each of where the forces are acting (Medina,
2013).

2.3 Flybar

There is an important mechanism that part of the main rotor and is placed over the upper blades and, is called flybar.
This systems will help the helicopter to make the movements slower and smoother creating a delay on the response to the
control. This bar doesn’t generate any thrust, but it will change the angle of the blades of the upper rotor, changing the
direction of the upper rotor as seen in equation 6 from the FUpR (Bouabdallah et al., 2006).

To describe the movements of this bar it was necessary to suppose that the bar in movement creates a "plate" that
rotates over a shat, and the position of the "plate" will depend of two angles β and α. In figure 2.3are the angles depending
of the movement of the helicopter (Bernard Mettler, 2003).

Figure 4. α Angle Figure 5. β Angle

This two angles were described as first order equations in 9 and 10

˙βbar =
1

Tbar
(θ − βbar) (9)

˙αbar =
1

Tbar
(φ− αbar) (10)

3. CONTROLLER

The Linear Quadratic Regulator was implemented to control the helicopter. To apply this theory the system was
linearized over a operation point where the helicopter is in hover position, so the system can be described as in equation
11.
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ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(11)

The states to be controlled:

x(t) =
[
q(t) r(t) θ(t) ψ(t) β(t) w(t) z(t)

]
(12)

u(t) =

 Uupper(t)
Ulower(t)
UTR(t)

 (13)

where the first two parameters correspond to the angular velocities over y and z, the next two are the euler angles, β
is the flybar angle decribed before and finally the translational speed and position altitude. The u vector are the angular
velocities of rotation for each of the rotors.

The system was linearized assuming that the helicopter is in hover position and that the rotors where generating enough
thrust to compensate the force of the gravity. As first step the stability of the open loop system is verified looking in to
the poles over the A matrix. In figure 3., is shown the instability of the system with poles on the right side of the plane and
also some poles at the origin, so it is necessary to implement a control algorithm.

Figure 6. Poles and Zeros of the System in Open-Loop

3.1 LQR Controller

Figure 7. Linear System Blocs Diagram

The LQR controller is one of the techniques of the Optimal Control that allows the system to operate with a minimum
cost. For any system described with a differential equation as 11, the system must be Controllable as in Braslavsky (2007),
then a cost function 14

J =
1

2

∞∫
to

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (14)
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can be minimized using a gain F that gives an input to system as in equation 17. This linear feedback law produces a
global minimum of the performance criterium Hespanha (2007). The solution to obtain this gain is in terms of the solution
of the Algebraic Riccati Equation 15 P Hespanha (2007).

0 = ATP + PA+Q− PBR−1BTP (15)

Fopt = −R−1BTP (16)

u(t) = −Foptx(t) (17)

Feeding back the u(t) signal to the system, the states equation will become as equation 18, creating a new A matrix
and changing the position of the poles of the system.

ẋ(t) = (A−BF )x = Acx(t) (18)

3.2 Feedback Control

To calculate the Fopt gain the lqr algorithm from MATLAB is used. This algorithm has as inputs theA andB matrices
of the linear system and the Q and R weight matrices for the cost functions, that must be positive definite. Q and R
will define the behavior of the closed loop system depending on the weights for each of the states. There is not a law to
calculate the right values for the Q and R matrix, althouhg exist some rules that helps to have a start point to choose the
right weights. In this case it was used the Bryston rule as start point, where the maximum value allowed for each of the
states is defined and the value on the matrix is defined as in equation 19.

Q(i, i) =
1

x2i,max
R(i, i) =

1

u2i,max
(19)

These values can change depending on the desired response of the system. Then the final result was:

Q = 105 ∗



0.0033 0 0 0 0 0 0
0 0.0328 0 0 0 0 0
0 0 1.3121 0 0 0 0
0 0 0 0.1312 0 0 0
0 0 0 0 0.000001312 0 0
0 0 0 0 0 0 0.1
0 0 0 0 0 0 1


R =

 0.1111 0 0
0 0.1111 0
0 0 2.1633 ∗ 10−5


(20)

using these matrices the value of Fopt will place the poles of the closed loop of the equation 18, as in figure 8, having
all the poles at the left side of the plane, making the system stable.

Degree of Stability

To guarantee better performance of the system, the theory of degree of stability was implemented. The degree of
stability will put as condition of the closed loop that all the poles of the stable system are going to be on the left side of the
choosen value (Padhi, 2013). This value will modify the cost function J adding an exponential term and giving a degree
to the linear system, as shown in equation 21

J =
1

2

∞∫
to

e2αt
[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

ẋ(t) = (A+ αI)x(t) +Bu(t)

(21)
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Figure 8. Closed Loop Poles of the System

Figure 9. Response of the q, θ, r and ψ states Figure 10. Response of the β, w and Z states

The selected degree was α = 0.3, and it was used to give a quicker response to the system. The way that this degree
is calculated depends on the final desired performance and the knowledge of the system behavior.

In figures 9 and 10, the position in θ, ψ and Z have an initial condition, so the controller will compensate this initial
value taking all the states asymptotically to zero. The states have no overshoot and a time of stabilization less than 3s,
giving a good performance to the system.

State Observer

In most of the cases when a control algorithm is developed, the gain matrix F is calculated assuming that all the
stated of the system can be measured, but this is not the case in most of the implementations. In this project the states
available to be measured were y(t) = [q(t), r(t), θ(t), ψ(t), w(t), z(t)]T , so considering these states it was calculated
the Observability of the system as in (Braslavsky, 2007), allowing to design a Full State Observer as in figure 11. This
observer will estimate the unmeasured states of the system based on the control inputs and the measured states, the ŷ(t)
states will be the same states as the ym(t) but estimated by the linear plant. Finally the observer has to follow the behavior
of the real plant so the gain matrix F will be feeding back to the No Linear system. Then, final system with observer will
be as in equations 22.

ẋ(t) = Ax̂(t) +Bu(t)
ˆ̇x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))

(22)

To calculate the right Observer, its necessary to minimize the error between the measured and the estimates signals
(e = y − ŷ). Then substituing the error signal in to the equation 22, and after some manipulation the result will be the
differential equation 23, that will converge asymptotically to zero depending of the values of L.

ė(t) = (A− LC)e(t) (23)

The L matrix as in equation 12 will place the poles in the left side of the plane, but in this case it is necessary to
place the poles of the observer more in to the left making the response of the error to converge faster than the poles of the
controller. The equation 23 is similar case like in equation 18, so it is possible to use the same technique to calculate the
Optimal value of L. Giving weights in to the Qobs and Robs matrices
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Figure 11. Observer Blocs

Qobs = 109 ∗



1 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0
0 0 0.0001 0 0 0 0 0
0 0 0 0.0001 0 0 0 0
0 0 0 0 0.00001 0 0 0
0 0 0 0 0 0.0010 0 0
0 0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0 0.0001



Robs = 1 ∗ 10−3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(24)

Figure 12. System and Observer Poles

After giving weights to the Qobs and Robs matrices, in figure 12, the poles of the observer (green) are more in the left
side of the plane than the poles of the system (blue), this will let the observer to track the behavior of the helicopter in the
operation point.

As seen in figure 13 and 14, the observer estimates the states of the plant using as inputs the measured signals from
the helicopter ym and computing the error with the ye, stabilizing the helicopter. Although it was used a control tracking
technique as in (Padhi, 2013), allowing the helicopter to follow a reference input signal. Because of its configuration this
helicopter was able to change its orientation over the ψ angle and its altitude z.

To verify the robustness of the controller, in these simulations some of the parameters as the mass of the helicopter
were changed, obtaining a good performance.
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Figure 13. Response of the q, θ, r and ψ states, using an
Optimal Observer

Figure 14. Response of the β, w and Z states, using an
Optimal Observer

4. CONCLUSIONS

The development of the dynamic model took in to account most the main forces and torques that are acting over the
helicopter, allowing to have a good description of its final movements and showing the nonlinearities because of coupled
forces. The use of a linear control algorithm as LQR shows, is a good solution for MIMO systems, getting a good
stabilization and improving the final behavior of the helicopter as shown in the different simulations. For future projects
the LQR controller can be implemented in a electronic board to control the real plant and verifying the real performance
of the controller.
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