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Abstract. In this paper, experimental results related to structural damage diagnosis are presented, including damage
detection, severity analysis and localization. The original approach used in this study is based on the assessment of a
distance metric between infinite observability matrices experimentally identified using data from healthy and damaged
structures, through an output-only subspace-based identification algorithm. Time series analysis of vibration signals from
an aluminum plate, measured with and without damaged conditions, conducts to identification of ARMA models in a
state-space form. A reference model for the undamaged plate is selected and current measurements of damaged plate
are compared to this signature using the adopted subspace metric. Analysis of results indicates that the method can be
applied for efficient severity analysis, localization and detection of damages in real structures.
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1. INTRODUCTION

Mechanical structures are subjected to aging from repetitive strain, friction, loads, and differences in temperatures and
pressures. Furthermore, parts of these structures can be in contact with rain, moisture and other corrosive agents. Thus,
the combination of these physical and chemical agents contributes significantly to structure deterioration. An efficient
detection of damage can prevent catastrophic failures and save maintenance costs. Thereby, in these last decades, damage
detection techniques and structural health monitoring (SHM) have been investigated, and several damage indicators have
been proposed in literature (Fan and Qiao, 2010; Genari and Nobrega, 2012; Fassois and Sakellarious, 2007).

Structural vibration characteristics, such as frequency, vibration modes and damping, are directly influenced by phys-
ical properties, such as mass and stiffness. Damage reduces the stiffness and/or the mass of the structure, and so alters
the dynamical response (Humar et al., 2006). Damage detection methods based on vibration characteristics use changes
in modal frequencies, mode shapes and flexibility matrix as a damage indicator (Carden and Fanning, 2004; Worden and
Dulieu-Barton, 2004; Saeed et al., 2009a,b).

Time-series analysis-based methods, a subclass of vibration-based methods, are another important category for damage
detection. For example, Lu and Gao (2005) considered the standard deviation of residual error of auto-regressive with
exogenous input (ARX) models for fault detection; Nair et al. (2006) considered only the first three AR coefficients of the
auto-regressive moving-average (ARMA) model to define a damage-sensitive feature. Zhen and Zhigao (2010) proposed a
technique to detect damage of offshore platform structures based on the fact that auto-regressive coefficients are function
of the structure’s eigenvalues. Fassois and Sakellarious (2007) made a general revision of the time-series methods for
fault detection. One important feature of fault detection and structural health monitoring using time-series is that it is not
necessary to know the underlying model under healthy stats. Furthermore, they may be conveniently applied when only
the resultant vibration is possible to measure, and the correspondent excitation is unknown or not accessible.

Considerable part of time-series damage detection methods uses the system identification techniques to obtain modal
properties from measured signals. The stochastic subspace identification has received great attention from the scientific
community to be efficient in extracting the desired damage features and damage detection (Ren et al., 2011). For instance,
Bodeux and Golinval (2003) presented results of modal identification and damage detection on the Steel-Quake struc-
ture using the autoregressive moving average vector and data-driven stochastic subspace methods. Inocente-Junior et al.
(2009) used subspace identification and residue generation for SHM in real beams. Genari and Nobrega (2012) showed
that cepstral metric technique together with stochastic subspace identification can be used for damage detection in real
structures.

ARMA models are commonly assumed when time-series analysis is involved. A cepstral metric for distance evaluation
between models was originally introduced by Martin (2000), and subsequently a subspace metric was proposed by De
Cock and De Moor (2002), expressed as angles between identified models. Zheng and Mita (2008) adopted both metrics
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as damage indicators, and applied it to a mathematical model of a structure with five storeys, subjected to simulated
ambient and earthquake excitations and stiffness reduction as damage. Experimental results of monitoring a building
using cepstral-based SHM method were presented by Zheng and Mita (2007) considering a low frequency range and five
vibration modes. Despite the good prospect of these methods as damage indicators, experimental results for the subspace
method are not published yet. Also, several aspects of the application of the method to structures regarding severity and a
more precise damage localization are not yet adequately studied.

In this paper, a subspace metric for damage detection and diagnosis, considering a medium frequency range analysis,
is experimentally studied, using an aluminum plate with piezoelectric sensors and actuators, and different simulated
damages. Initially, several measured time series of the plate with and without damage are used to identify state-space
models based on an output-only subspace method. Thereafter, the undamaged and damaged plate models are compared
through the adopted subspace metric. Differences between models are used as a damage indicator, and an analysis of
severity and localization is conducted. Results show that using medium frequency range is a promising way to detect
damage and to assess its severity.

2. BASIC THEORY

The damage detection methodology is represented by the flowchart of Fig. 1. The first step is the signal acquisition of
input and output of the structure. By using subspace identification, based on output-only method, the ARMA models are
obtained. Reference ARMA models are identified from normal structure vibration signals, while the new ARMA models
are obtained from damaged structure vibration signals. Then, damage indicators are computed as the distance between
models using subspace metric. The following subsections describe each block of the flowchart.

Output signal from healthy
structure

Subspace identification Reference ARMA model

Output signal from damaged
structure

Subspace identification New ARMA Model

Damage indicator
(subspace metric)

Residue

Figure 1. Flowchart of damage detection methodology

2.1 Subspace metric

An ARMA model, linear, time-invariant, stable and minimum phase, can be described by the forward innovation
state-space form:

x(k + 1) = Ax(k) +Ke(k)

y(k) = Cx(k) + e(k) (1)

in which e(k) is the innovation process, K is the Kalman gain, x(k) is the state vector, y(k) is the output of the model
and A and C are deterministic matrices.

Assuming that H(z) is the transfer function in z-domain of the model expressed by Eq. (1), cepstrum coefficients of
H(z) are defined as:∑

m∈Z
c(m)z−m = log(H(z)H̄(z−1))

in which H̄ denotes the complex conjugate of H ∈ C.
Martin (2000) defines the distance between two ARMA models M1 and M2 with transfer functions H1(z) and H2(z)

as the distance between its cepstrum coefficients, given by:

DM (M1,M2)2 =
∞∑

m=1

m | c1(m)− c2(m) |2

De Cock and De Moor (2002) expressed the cepstral metric directly in terms of the principal angles between infinity
observability spaces. For instance, let M1 = (A1,K1, C1) and M2 = (A2,K2, C2) be two ARMA models with infinite
observability matrix defined by:

O∞(Mi) =
[
Ci CiAi CiA

2
i

. . .

]T
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Then, the distance betweenM1 andM2 can be calculated in terms of the principal angles between the subspace ranges[
O∞(M1) O∞(M−12 )

]
and

[
O∞(M2) O∞(M−11 )

]
, where M−1i = (Ai−KiCi,Ki,−Ci) is the inverse model

of Mi. Thus, the distance defined by Martin (2000) can be written equivalently as:

Ds(M1,M2)2 = log
2n∏
i=1

1

cos2 θi

in which θi is ith principal angle between these spaces and n is the model order.
It can be proved that it is sufficient to consider AR parameters to measure distance between two ARMA models (Mar-

tin, 2000; Zheng and Mita, 2007). Thus, let M1 = (A1, C1) and M2 = (A2, C2) represent two AR models with order n.
Then, the subspace metric is equal to:

Ds(M1,M2)2 = log
n∏

i=1

1

cos2 θi
(2)

where θi are the principal angles between the subspace rangesO∞(M1) andO∞(M2). Notice thatO∞(Mi) = −O∞(M−1i )
when K of Eq. (1) is null and this implies that it is necessary to calculate only n subspace angles between the infinite
observability matrices of M1 and M2.

2.2 Subspace identification

Consider a stochastic linear time-invariant system in a state-space discrete-time representation:

x(k + 1) = Ax(k) + ω(k)

y(k) = Cx(k) + e(k), k = k0, k0 + 1, · · · (3)

in which k0 is the initial time index, x ∈ Rn×1 is the state vector, y(k) ∈ Rp×1 is the observation vector, andA ∈ Rn×n

and C ∈ Rp×n are deterministic matrices. The vector ω ∈ Rn×1 is the plant noise and e ∈ Rp×1 is the observation
noise vector. Both of these noise vectors have with zero mean and have as covariance matrices Q, R and S such as:

E

{[
ω(k)
e(k)

] [
ωT (s) eT (s)

]}
=


[
Q S
ST R

]
, if k = s

0, if k 6= s

where E{·} represents mathematical expectation, R ∈ Rp×p is positive definite and Q ∈ Rn×n is nonnegative definite.
The model described by Eq. (3) can be converted into a forward innovation model through the application of the

Kalman filter (Desai and Pal, 1982). Considering ω(k) = Ke(k) and e(k) = y(k) − Cx(k), the forward innovation
model represented by Eq. (1) is obtained.

Thus, for system identification of the ARMA model in the forward innovation state-space form, it is necessary to
estimate matrices A and C, and Kalman gain K. However, for the application in this paper, only the AR part of the
ARMA model is considered. Therefore, only the estimation of matrices A and C is needed. Methods that include
estimation of K are described in (Overschee and Moor, 1996; Katayama, 2005).

In most damage detection applications, the excitation is unknown and it is necessary to use output-only methods for
system identification. In this paper, only the output data is used to estimate matrices A and C.

The Hankel form is depicted as the covariance matrix between past and future output data of the time series, i.e:

Hk,k = E




y(k + 1)
y(k + 2)
y(k + 3)

...
y(k + k)




y(k)T

y(k − 1)T

y(k − 2)T

· · ·
y(k − k + 1)T


T


=


Λ(1) Λ(2) · · · Λ(k)
Λ(2) Λ(3) · · · Λ(k + 1)
...

...
. . .

...
Λ(k) Λ(k + 1) · · · Λ(2k − 1)


where {Λ(l) = E{y(k + l)y(k)T }, l = 0, 1, · · · , L}, 2k − 1 ≤ L and p(k − 1) ≥ n.

The Hankel matrix can be decomposed, if rank(Hk,k) = n, as:

Hk,k = OkΓk (4)
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in which Ok and Γk are extended observability and reachability matrices, respectively, defined as:

Ok =


C
CA
...

CAk−1

 , Γk =
[
C̄T AC̄T · · · Ak−1C̄T

]

where C̄ = E{y(k)xT (k + 1)}.
The singular value decomposition of Hk,k is given by:

Hk,k =
[
Un Ur

] [ Σn 0
0 Σr

] [
V T
n

V T
r

]
= UnΣnV

T
n (5)

in which Σn contains the largest n singular values of Hk,k.
Comparing Eq. (4) with Eq. (5), the extended observability and reachability matrices become

Ok = UnΣ
1
2
n , Γk = Σ

1
2
nV

T
n

The upward shift of the extended observability matrix generates the following identity


C
CA
...

CAk−2

A =


CA
CA2

...
CAk−1

 ⇐⇒ Ok−1A = Ok(p+ 1; kp, 1 : n)

where A is obtained through the least squares solution.
The matrices C and C̄T are computed from the extended observability and reachability matrices, respectively, as

C = Ok(1 : p, 1 : n), C̄T = Γk(1 : n, 1 : p)

2.3 Damage indicator

In this work, the distance measure between AR models is considered to be a damage indicator. Assuming that a
reference model is obtained of the healthy structure and there exists a model representing the damaged structure, the
diference between the two models is correlated with the position and severity of the damage. To quantify the distance
between AR models, a subspace metric for AR models is adopted. From Eq. (2), the following damaged indicator is
proposed:

Ds(M1,M2) =

√√√√log
n∏

i=1

1

cos2 θi

where the matrices O∞(M1) and O∞(M2) used to calculate the principal angles θi are obtained by on-line identification
using the previous approach.

3. EXPERIMENTAL RESULTS

3.1 Setup description

The experimental setup consists of a rectangular aluminum plate supported by foam to simulate free vibration. The
plate has sides measuring 700mm per 500mm and thickness measuring 1mm (Fig. 2).
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Figure 2. Experiment setup

The plate is mounted with nine piezoelectric elements, eight piezoelectric elements as sensors (s1, s2, . . ., s7 and s8)
and one piezoelectric element as actuator (a1), as shown in Fig. 3. The precise location of the sensors and the actuator,
using the reference axis of Fig. 3, is presented in Tab. 1.

Table 1. Location of the sensors and the actuator.

axis a1 s1 s2 s3 s4 s5 s6 s7 s8
x (mm) 0 -280 -280 -280 0 280 280 280 0
y (mm) 0 -200 0 200 200 200 0 -200 -200

700 mm

50
0 

m
m

s1 

s2

s3 s4 s5

s6

s7s8

a1
x

y

Figure 3. Sensors and actuator positions

For each pair of sensor and actuator (a1 − si), a single-input and single-output (SISO) transfer function is considered.
For instance, a1 − s1, . . ., a1 − s8 are all the possible SISO systems and are named in the sequel: s1, . . . s8, respectively.
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3.2 Damage monitoring

A dSPACEr board, model DS 1104 and ControlDeskr software are used for the signal generation and data acquisi-
tion. The excitation signal is amplified and applied to a piezoelectric transducer. The vibration signal is captured by the
other piezoelectric sensors, amplified and transmitted to acquisition. The block diagram of experimental setup is presented
in Fig. (4). In this experiment, white noise signal with average zero and variance 0.4, sampled at 20kHz and with 50000
points, was applied as excitation signal and its response is here analysed in the frequency range from 2kHz to 10kHz.

dS
P

A
C

E
Excitation 
Amplifier

Piezoelectric 
Actuator

Instrumentation 
Amplifier

Piezoelectric 
Sensors

Aluminum
    Plate

Figure 4. Block diagram of the experiment setup

Damage will significantly alter the measured dynamic response, due to changes in stiffness, mass or energy dissi-
pation (Sohn et al., 2004). In order to test the performance of the SHM proposed approach, several calibrated damage
are introduced at different localization on the plate. Thus, masses of 2.5g, 8.5g and 20g are added at specific places to
evaluate the efficiency of the monitoring algorithm to detect, locate and diagnosis the damage. With these masses, it was
initially created four configurations caused by interaction between plate and masses, as follows:

1. No mass on the plate (healthy plate);

2. Mass of 2.5g on position (−210,−50) (damage 1);

3. Mass of 8.5g on position (−210,−50) (damage 2);

4. Mass of 20g on position (−210,−50) (damage 3).

Figure 5 shows masses position on the aluminum plate for configurations 2, 3 and 4. For each configuration, eight AR
models are identified. In configuration 1, the eight healthy models are considered as reference. Thus, using the subspace
metric, each reference model can be compared with their respective model for the different configurations. For example,
the healthy s1 model is compared with s1 model of configuration 2.

700 mm

50
0 

m
m

Mass of 2.5g or 8.5g or 20g

s1

s2

s3 s4 s5

s6

s7s8

a1
x

y

Figure 5. Masses position for configurations 2 to 4
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Figure 6 presents the differences between reference models and models of configurations 2, 3 and 4, using the subspace
metric. Note that all masses produce differences between models, but this difference increases with the mass weight and
with proximity to the sensor. Thus, subspace metric is able to detect damage and quantify its severity. Also, in the region
between sensors s1 and s2, where the masses were placed, the models had the greatest difference. Thereby, subspace
metric can be used to locate damage.

1 2 3 4 5 6 7 8
4.5

5

5.5

6

6.5

7

7.5

8

Models

D
is

ta
nc

e

Damage 1
Damage 2 
Damage 3

Figure 6. Distance between reference and damaged plate models for configurations 2, 3 and 4

To prove that the technique is also effective to locate damage, two new configurations are tested (Fig. 7):

5. Mass of 20g on position (−210,−50) and mass of 2.5g on the position (70, 150) (damage 4).

6. Mass of 20g on position (−210,−50) and mass of 8.5g on the position (70, 150) (damage 5).

700 mm

50
0 

m
m

Mass of 20g

s1

s2

s3 s4 s5

s6

s7s8

Mass of 2.5g or 8.5g

a1
x

y

Figure 7. Masses position for configurations 5 and 6

The distance between the reference models for configurations 5 and 6 is presented in Fig. 8. Also in this case, the
difference increases with the mass weight and with proximity to the sensor. It can be seen that there are two regions where
the difference is greater: between sensors s1 and s2, and between sensors s4 and s5. These regions coincide with positions
of the masses. Thus, subspace metric proves to be an efficient method for damage detection, analysis of damage severity
and as damage localization indicator.
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Figure 8. Distance between reference and damaged plate models for configurations 5 and 6

4. CONCLUSION

Experimental results based on subspace metric and subspace identification for SHM purpose were reported. A rect-
angular aluminum plate was used for the experiment and three masses of 2.5g, 8.5g and 20g were placed on the plate, in
specific places, to simulate damages. Using eight piezoelectric sensors and one piezoelectric actuator, eight SISO systems
were identified using subspace algorithm, one for each sensor/actuator pair. The eight systems of the plate without dam-
age were considered as reference models and, for each damage simulation, eight other systems were identified. Subspace
metric between healthy and damage configurations have been calculated and residues were analyzed for SHM purpose.

The subspace metric proved to be efficient in identifying damages, their locations and severity in these real applica-
tions. However, some questions remain to be investigated, such as using it on complicated structures, which are going to
be object of future developments.
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