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Abstract: The unsteady hydrodynamic motions around submersed bodies is studied numerically in the
present paper. A finite element model is proposed to solve the governing equations of momentum and mass
conservation including advection, pressure and shear stress terms. The Prandtl-Kolgomorov model is
included to approach the turbulence influences. The model is also able to describe the mixture involving
liquid and vapor flows including a transport equation to simulate the evolution of water vapor fraction
produced if the pressure drops below the vapor pressure when cavitation problems take place. The finite
element model uses linear spatial polynomials to approximate the variables, also includes a characteristic
scheme to approach the non-linear advection terms in the equations and for the open outlet sides of the
domain non-reflecting open boundary conditions are imposed. The numerical experiments are performed for
study cases considering the NACA 0012 hydrofoil profile. The model has been shown capable of capturing
the dynamics of unsteady circulation around the hydrofoils also for mixture liquid/vapor flow.
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1. INTRODUCTION

The fluid motion around submersed bodies encompass a variety of fluid mechanics phenomena. The
character of the flow field depends on the shape of the body. The study of flow around immersed bodies has
a wide variety of engineering applications such as turbines and submerses vehicles, offshore structures,
pipelines.

Fluid around bodies produce complex flows because the pattern and related forces depend strongly on
various parameters such as size, orientation, speed and fluid properties. The resulting pressure and velocity
field around the body is modified due the geometry and friction at the boundaries of the body. When the
Reynolds number increases, the flow begins to separates with the formation of unsteady vortex motions
mainly behind the body (Prandtl and Tietjens, 1957). The turbulent behavior of the fluid is an open
question and exists different options to model the turbulence. The more used turbulent formulations are the
family of k − ǫ models. A problem of these kind of models is that they are dependents of the geometry of
the case considered and also suffers from the deficiences of the gradient ansatz (Oertel, 2004). Due this fact,
the presence of many constant is the characteristic of these models. In spite of this, it is frequently used in
many softwares packages. Other option is the use of zero or one equation turbulent models (e.g.
Smagorinsky model, Prandtl-Kolmogorov model).

Many numerical solutions were reported in the literature about flow motions over hydrofoils. Mostly of
them using finite volume techniques and finite differences(e.g. Mostafa et. al. 2010; Karim et. al, 2010;
Kawamura and Sakoda, 2003; etc). Finite element approximations are still for the most part unexplored.
The present paper is a step in the study of such problems using finite elements which is a powerful numerical
technique to solve engineering problems (Hughes T., 2000; Connor and Brebbia, 1980).

The present study is focussed on the flow field around hydrofoils for different velocity and pressure
conditions, evaluating the changes of the variables, particularly the pressure coefficient and the vapor volume
fraction when the pressure is smaller than the vaporization pressure and cavitation take place. Cavitation
involves interactions between turbulent flow structures and phase changes dynamics with large fluid density
variations and pressure fluctuations. These mechanisms are not well understoodt and are a challenge for
research and here an exploring study is initiated.

A finite element model is developed and the hydrodynamic response of fluid flow over hydrofoils is
investigated. To avoid the problem of many constants, here will be used the Prandtl-Kolmogorov turbulent
model which includes the evaluation of the cinetic energy k and dissipation ǫ. Additionally to avoid the
influence of reflections due the outlet boundary, suitable non-reflecting boundary conditions were imposed.
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First, some experiments are oriented to flows around a submersed hydrofoil under non-cavitating condition
verifyng their response under different depths and angle of attack. Later, experiments for cavitating
conditions are conducted modeling the generation of vapor volume fraction.

1. THE HYDRODYNAMIC MODEL

1.1 Governing equations of motion and continuity

The governing equations for an incompressible hydrodynamic flow around a body in two dimensions are
described by the momentum and mass equations of an Newtonian fluid of density ρ in a vertical cartesian
coordinate system (x1, x2) with velocities ū =(u1, u2), pressure p, ḡ = (0, g) and eddy viscosity νT :

ρ

(

∂ū

∂t
+ ū∇ū

)

+∇p + ρνT△ū − ρḡ =0 (1)

∇ū = 0 (2)

with non slip boundary conditions around the surface of submersed body ΓH,

u=0 on ΓH (3)

essential boundary condition is prescribed in the entrance boundary ΓE,

u=u∞ on ΓE (4)

natural boundary conditions on the boundary tunnel wall ΓC ,

∂ū
n

∂xn

=0 on ΓC (5)

and weackly reflective conditions in the oulet side boundary ΓO of the flow domain

ρ
∂ū

n

∂t
+∇np = 0 on ΓO (6)

The eddy viscosity is modeled following the Prandtl-Kolmogorov turbulent model using

νt = cρl k
√

(7)

where c is a constant equal to 0.54, k is the turbulent kinetic energy, l is the characteristic lenght, ρ is the
fluid density. To evaluate νT the kinetik energy k is modeled using :

∂k

∂t
+ ū∇k −∇1

σ
νT∇k − νT |∇ū +∇ū T |2 + ǫ =0 (8)

where ε is the dissipation of cinetik energy approached as

ε = ρcε
k3/2

l
(9)

1.2 Transport equation for mixture phase flows

Cases of mixture flows could be studied considering a simple single fluid approach and a transport
equation for the vapor volume fraction. The transport equation describes the mixture model proposed by
Shingal et. al.(2002) which is written as

∂ρf

∂t
+∇fρ ū − (Se −Sc)= 0 (10)

where ρ is the mixture density, f is the vapour mass fraction and

Se =Ce
k

√

σ
ρl ρv

2

3

Pv −P

ρl

√

(1− f) P <Pv (11)
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Sc =Cc
k

√

σ
ρl ρv

2

3

P −Pv

ρl

√

f P > Pv (12)

Se, Sc represent the source terms for vapor generation and vapor condensation respectively. The source terms
are described from the Rayleigh-Plesset equation where higher order terms and viscosity term habe been left
out (see also Karim et. al. 2010 and Mostafa et. al. 2010).

The relation between the density mixture ρ and the vapour mass fraction fv is described by

1

ρ
=

fv

ρv

+
1− fv

ρl

(13)

The volume fraction of vapour phase αv is related to the vapour mass fraction fv according to:

αv = fv
ρ

ρv

(14)

1.2 The finite element model

The variational formulation of the unsteady hydrodynamic boundary value problem reads:
Find [ū , p, k, fv] in a suitable funtional S such that for a set of admissible test functions [wu, w

p, wk, w
f]

∈ V satisfy:

∫

Ω

wu

(

ρ

[

∂ū

∂t
+ ū∇ū

]

+∇p + µρνT△ū − ρḡ

)

dΩ = 0 (15)

∫

Ω

w
p∇ū . dΩ = 0 (16)

∫

Ω
wk

(

∂k

∂t
+ ū∇k −∇1

σ
νT∇k − νT |∇ū +∇ū T |2 + ǫ

)

dΩ = 0 (17)

∫

Ω

wf (
∂ρf

∂t
+∇fρ ū −Se +Sc) dΩ = 0 (18)

and also the boundary constrains

∫

ΓO

wu

(

ρ
∂ū

n

∂t
+∇np

)

dΓ = 0 on ΓO (19)

where the subscript “n ’ indicates the normal component of the velocity component and gradient.

The two-dimensional spacial domain Ω is partitioned in Nel triangular subdomains Ωe with a resulting
number of nodes Nnod. Similarly, the time domain is also partinionated into subintervals T n = [tn, tn+1] of
lenght ∆t, where the time levels belong to an ordered partition

0= t0 < t1 < t2 <			 . < tM = T (20)

where T is the end time.
The discretization proceeds by introducing the finite element expansion given by

u1 =u1j(t)φj , u2 = u2j(t)φj , p = pj(t)φj , k = kj(t)φj , f = fj(t)φj with j = 1, 2		Nnod (21)

such that ūj(t) = [u1j(t) , u2j(t)] and φj(x1, x2) are the linear basis functions.

Substituting the variables by their approaches (21) , the variational formulation of the indicated
equations after integration by parts is written in the following global form
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Mu d ūj(t)

dt
+ Hu pj(t) −Ru uj(t) −Gu = 0 (22)

Hcūj(t) =0 (23)

Mk dkj(t)

dt
−Rk kj(t) −P k + Dk =0 (24)

M
f dfj(t)

dt
−Sf = 0 (25)

for j = 1, 2		Nnod .
The matrizes Mu Mk M f , Hu, Hc, Ru, Rk and vectors Gu, P k, Dk, Sf represent the terms composed by

the integrals considered in the variational formulations

Mu =

∫

Ω

wu.ρ(φj , φj) dΩ

Hu =

∫

Ω

wu∇(φj , φj) dΩ

Ru =

∫

Ω

∇w ρνT
u ∇(φj , φj) dΩ

Gu =

∫

Ω

wuρḡ dΩ

Hc =

∫

Ω

wp∇(φj , φj) dΩ

Mk =

∫

Ω
wk φj dΩ

Rk =

∫

Ω
∇wk 1

σ
νT∇φj dΩ

P k =

∫

Ω
wk νT |∇ū +∇ū T |2dΩ

Dk =

∫

Ω
wk ǫ dΩ

M f =

∫

Ω

w
f
ρφj dΩ

Sf =

∫

Ω

wf(Se −Sc) dΩ

In the present formulation the test functions [wu, w
p, wk, w

f] are setting equal to φj. The time
approximation of time derivatives are obtained defining for a generic variable U(t) a linear approach
between the two time levels n and n + 1 expressed as

U(t)= θUn+1 + (1− θ)Un (26)

where

θ =
t− tn

tn+1− tn
(27)

In this way the time derivative is approached by

d

dt
U(t)=

1

∆t
(Un+1−Un) (28)

in the present paper θ was fixed equal 1.

The numerical integration in time has an implizit form of the equation as follows
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Mu

(

ūj
n+1− û

j

n
)

∆t
+ Hu pj

n+1−Ru ūj
n+1−Gu = 0 (29)

Hc ūj
n+1 =0 (30)

Mk

(

kj
n+1− k̂j

n)

∆t
−Rk kj

n+1 −P k + Dk =0 (31)

M
f

(

fj
n+1− f̂j

n)

∆t
−Sf = 0 (32)

The terms û
j

n, p̂
j

n, k̂
j

n
, f̂

j

n
are the variables at time level “n” obtained by a characteristic approach.

This is a way to calculate these values when nonlinear advection take place. The characteristics are based on
the fact that motions invariants prapagates along the characteristics in space and time conserving a Rieman
Invariant ( Abbot, 1966). Also mixing the method of characteristics and the finite element method
(Pironneau, 1982) gives satisfactory solutions. A generic variable Ûj

n
is function of a vector field V and the

particle path X (x1, x2), such that X is solved integrating backward in time( to ge X ) the following equation:

dX
dt

= V (X , t) when X (∆t(n +1)) = (x1, x2) (33)

3. NUMERICAL EXPERIMENTS

3.1 The study domain and parameters of the model

In the present section, the flow field around a NACA 0012 hydrofoil of chord length c = 0.1m is modeled.
The hydrofoil is located in the middle of a tunnel of length 10c and height 4c (Figure 1). The study domain
is represented by a mesh of triangular elements. The number of elements and nodes depends on the
orientation of the hydrofoil in the various experiments performed here, but in all the cases the number of
elements are around 14100 with around 7200 nodes. The reference pressure p∞ increase with the depth. Slip
boundary conditions are imposed in the upper and lower tunnel walls. Non-slip conditions are imposed on
the surface of the hydrofoil. In the outlet boundary a suitable boundary condition is imposed, whereas in the
entrance boundary a uniform velocity u∞ is imposed.

Figura 1. Finite element mesh of hydrodynamic channel and hydrofoil

The experiments presented in this paper were based on the flow field over a NACA 0012 symmetric
hydrofoil submersed in water. This profile is often used in aero and hydrodynamic studies. Here, the
hydrodynamic characteristics of the hydrofoil is explored at different angle of attack, water depths and
cavitating conditions. The parameter used in the experiments are the following: the water density at 250C is
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fixed as ρl = 997.009 kgm−3, and the dynamic viscosity is equal to µl = 8.91×10−4Pas. When the experiment
are related to cavitating conditions, the vapour water density is ρv = 0.02308 kgm−3 and the vapour dynamic
viscosity is µv = 9.8626×10−6Pas and the vaporisation pressure is Pv = 3169Pa. The integration in time used
a time interval of ∆t= 0.0005s up to time 0.5s.

For the Cp field, the comparison criteria is the pressure coefficient at the stagnation point is maximal and
equal to the value Cp = 1. The pressure coefficient is defined as

Cp =
p− p∞
1

2
ρu

∞

2
(34)

3.2 The water fluid circulation and pressure distribution

The experiments performed in this subsection deals with the case of a submersed hydrofoil at different
water depth and different angle of attack. The considered water depths of the hydrofoil were 2c, 3c and 4c.
The water flows at 1ms−1 at the left entrance.

For the case when u
∞

= 1ms−1 and α = 50, the pressure coeficient Cp on the hydrofoil surface at three
depths of water is presented in the Figure 2. It is possible to see that the effect of the water depth of water
is not significant for the submersed conditions here considered.
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Figura 2. Cp on the surface of hydrofoil for α = 50, u
∞

= 1ms−1 and depths: left) 2c ;center) 3c; right) 4c

The influence of the angle of attack α is explored in the following experiments. When the angle of attack
changes the Cp field is modified considerably. The Figures 3 and 4 shown the pressure coefficient distribution
field around the hydrofoil and its variation on the hydrofoil surface for two angles of attack. The increase of
the angle of attack reduces the pressure on the upper surface reaching values near Cp=-2 for α = 100,
whereas for α = 50 the value of the pressure coefficient is around Cp=-1 .
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Figura 3. Left: Cp field for α = 50, u
∞

=1ms−1 depth=2c ; Right: Cp on the hydrofoil surface
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Figura 4. Left: Cp field for α = 100, u
∞

= 1ms−1 depth=2c ; Right: Cp on the hydrofoil surface

3.1 The pressure distribution and vapour volme fraction for cavitating conditions

In the present case, it is consider a mixture flow where the density will changes according to the presence
of vapour of water. The vapour density for the saturation state is ρv = 0.02308 kg m3, the vapour viscosity
µv = 9.8626×10−6Pa s and the vaporization pressure at 25oC is Pv = 3169Pa.

The number which describes the state conditions related to the pv is the cavitation number σ defined as

σ =
pv − p
1

2
ρu

∞

2
(35)

The Figures 5 and 6 show the field distribution at time t=0.5s of the pressure coefficient Cp and vapor
volume fraction αv, for cavitation number σ equal to 0.8 and 0.4. The solutions show the generation of
vapor in the upper side of the hydrofoil where the density of water is reduced as a consequence of the
cavitation behavior. Due the transport of the vapor volume fraction, the cavity shows an vapor advection
directed to the right end of the hydrofoil. The intensity of the vapor volume fraction is associated to smaller
values of the cavitation number σ. In these cases, the negative pressure coefficient on the hydrofoil surface
is not greater due the formation of the cavity. The generation of the vapor volume fraction is initiated in a
sector on the upper surface of hydrofoil at a distance of 10% of the chord length measured from the
stagnation point. The generated mixture is transported downstream leaving the foil.

Figura 5. Distribution of Cp(left) and αv(right) at t=0.5s and α =60, v
∞

=6ms−1 , σ = 0.8
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Figura 6. Distribution of Cp(left) and αv(right) at t=0.5s and α = 60, v
∞

= 6ms−1 and σ = 0.4

4. SUMMARY AND CONCLUSIONS

The present paper deals with the hydrodynamic motions around submersed bodies. A two-dimensional
finite element model is proposed to solve the governing equations of momentum and mass conservation
including advection, pressure and shear stress terms. A turbulent model is included to evaluate the cinetic
energy k and dissipation ǫ. This is called the Prandtl-Kolgomorov turbulent model. When phase flows are
produced (liquid and vapor flows) due reduction of pressure in relation to vaporization pressure, a transport
equation is used to simulate the evolution of the mixture of water mass vapor fraction. The finite element
model includes a characteristic scheme to approach the non-linear advection terms in the equations and for
the open outlet sides of the domain non-reflecting open boundary conditions are imposed. The numerical
experiments were performed for study cases considering the NACA 0012 hydrofoil.

The influence of water depth and angle of attack are initially studied. The results show that the effect of
the water depth is not significant for the submersed conditions considered in the present paper. It was also
observed the increase of the negative pressure coefficient with the angle of attack.

The results obtained by simulating the mixture liquid/vapour flows for cavitation numbers 0.8 and 0.4 are
very promising. The vapor volume fraction is generated in the upper side of the hydrofoil due the reduction
of the water density forming a cavity with unsteady behaviour.
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