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Abstract. When dealing with high-speed flows, within the transonic, supersonic or hypersonic regimes, the presence of
shock-wave phenomena dictates the main features of the flow. Shock waves are very thin structures across which the
flow properties vary in a practically discontinuous fashion. Therefore, within the environment of computational fluid
dynamics, the employment of adaptive mesh refinement is crucial for the proper capturing of shock waves and related
flow transitions. This work presents an elegant approach for the precise demarcation of shocks, minding the subsequent
application of local grid refinement. The proposed technique is based on the use of an operator originally developed within
the context of dynamical systems, namely, the Finite Time Lyapunov Exponent (FTLE). When applied to the dilatation field
(divergence of velocity) of the flow, such operation is capable of highlighting shock-waves in a remarkable way. In order
to demonstrate the capabilities of the method, different test cases are addressed, minding specially the aerospace context.
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1. INTRODUCTION

The physical phenomena that take place in high-speed flows is of paramount importance specially in the aerospace
context. For such flows, the presence of structures known as shock waves, through which the fluid properties experience
an abrupt change, dictates the main features of the flow field. In typical aeronautical conditions, the thickness of a shock
wave is so small (about 10-7m) that it may be regarded as a discontinuity. This feature represents an extremely difficult
challenge for numerical schemes which are designed to simulate such flows.

When a numerical scheme is used to solve a set of partial differential equations (PDE) modeling the physical phe-
nomena taking place, a discrete domain is chosen where an algebraic approximation to the PDEs is actually solved.
Regardless of the numerical formulation adopted, the local error and hence the accuracy of the solution are functions
of the local mesh size. In the vicinity of shocks, numerical schemes normally introduce unphysical wiggles, commonly
related to the Gibbs’ phenomenon. The methodologies developed to overcome this issue usually reduce the local accuracy
to first order in these regions, smearing the shock waves and increasing the associated numerical thickness. In such cases,
only a local mesh refinement would diminish the numerical dissipation and provide a better shock resolution without the
excessive computational cost that would follow from global mesh refinement.

Thus, the use of local mesh refinement has become a very useful tool when dealing with high speed flows and has
drawn the interest of the scientific community (Arney and Flaherty, 1989). In the past 30 years there was plenty of
works which addressed several algorithms and convergence efficiency studies that proved the importance of such tool
(Rheinboldt, 1980; Berger and Collela, 1989; Berger and Oliger, 1984). Many of them use a multigrid-like approach
consisting of using several layers of progressively refined meshes that are overlaid only in the regions where the refinement
is needed. The main advantage of such approaches is that there is no change in the main mesh being calculated, which
is very interesting specially when dealing with complex geometries. In this work, however, it was adopted a different
approach similar to the work of Ripley et al. (2004), in which the initial mesh is subjected to an iterative process where
successive refinements based in preliminary solutions obtained in the coarser grids are performed.

One of the most fundamental issues to be addressed when performing an adaptive mesh refinement is to determine
the regions which need to be subjected to the procedure, i.e. the locations of large gradients. In this paper, an operator
originally developed within the context of dynamical systems, namely, the Finite Time Lyapunov Exponent (FTLE) is
used to perform this task. An in depth analysis of the FTLE operator and of its applications is given in the work of
Shadden et al. (2005). Therefore, there is no need to reproduce all those details here.

This paper is organized as follows. A brief introduction to the FTLE operator is presented in section 2. The main
aspects concerning the refinement procedure are addressed in section 3. The numerical formulation of the solver used
for the simulations addressed, along with the test cases of interest, is described in section 4. Final comments and future
research possibilities are discussed in section 5.
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2. THE FINITE TIME LYAPUNOV EXPONENT

Recently, the development of the dynamical systems theory (specially in the field of non-linear dynamics and chaos)
and its application in fluid dynamics has provided interesting insights on the physics of a variety of flows using the so
called Lagrangian approach to the problem (Franco et al., 2007; Cardwell and Mohseni, 2007; Salman et al., 2007). As
opposed to the Eulerian scheme, the attention is here focused on the movement of each individual particle of fluid.

It is known that even unsteady flows may admit material lines which have an attractive or repulsive character with
regard to the fluid particles (Haller, 2001). Specially, following Shadden et al. (2005), the material lines derived from
individual particle trajectories are called Lagrangian Coherent Structures (LCS). A stable LCS is defined as the locus of
points whose trajectories converge to a particular region when t → ∞ (forward integration). Analogously, an unstable
LCS is the locus of points whose trajectories converge to a particular region when t→ −∞ (backward integration).

Shadden et al. (2005) have demonstrated that the LCSs can be calculated using the FTLE operator. Specifically, one
can show that the LCSs correspond to the ridges of the scalar field calculated by the FTLE. These ridges can be understood
as attracting (or repelling) structures whose dimensionality corresponds to the considered flow dimension subtracted by
one. For the two-dimensional flows of interest in the present research, the calculated LCSs are curves representing shock
waves.

2.1 Calculation methodology

Basically, the FTLE is a measure of the local repulsion (or attraction) of neighbor particles traveling on a given flow
field. In practice, it can be defined as the time-averaged maximum exponential rate of repulsion between particles initially
very close. Such particles must be convected by a prescribed vector field during a suitable time interval.

Let φt0+T
t0 (x, y) be the position vector at time t0 + T of a particle that, in time t0, occupies the position (x, y) and

let δi = (δx, δy) be an infinitesimal vector pointing toward an arbitrary direction. The initial difference δi between the
positions of two close particles will be amplified to the final distance δf = φt0+T

t0 (x + δx, y + δy) − φt0+T
t0 (x, y) by

the "traveling" function φ after a time interval T . Note that positive values of T correspond to a forward integration of
the particles trajectories in time and a negative value of T correspond to a backward integration in time. The FTLE value
calculated at (x, y), denoted by σT

t0(x, y), is given by

σT
t0(x, y) = max

δi

1

T
ln

(
|δf |
|δi|

)
, (1)

where δi is allowed to vary within a close perimeter of neighbor particles in order to provide the maximum local repulsion
rate.

Note that, once the parameters t0 and T are chosen, σT
t0(x, y) is a function of the position p = (x, y) only and therefore

represents a scalar field. Numerically, an efficient way to calculate this quantity over a entire domain was proposed by
Padberg et al. (2007). The key idea is to generate an equally-spaced Cartesian mesh whose nodes represent the initial
position of particles. Then, one can evaluate, for every grid node, the value of φt0+T

t0 (x, y) by integrating the trajectories
of each node-related particle. For sufficiently refined grids, the FTLE can be approximated by

σT
t0(p) =

1

|T |
ln

max
j

∣∣∣φt0+T
t0 (p)− φt0+T

t0 (nj(p))
∣∣∣

|p− nj(p)|

 , (2)

where nj(p) represents each of the eight mesh positions that are closest to p, namely, the satellite particles presented
in Fig. 1. Note that the term φt0+T

t0 (nj(p)) represent the position of each of the satellite particles at the end of the
time interval T . This expression is preferable when compared to other ones available in the literature because it avoids
the numerical calculation of derivatives. The finer the mesh used to calculate the FTLE, the more accurate will be the
resulting scalar field.

Note that according to the LCS definition previously presented, a high local value of the FTLE scalar field for either
a positive T (progressive integration) or negative T (regressive integration) would correspond to LCSs. Actually, it can
be shown (Shadden et al., 2005) that one distinctive feature of the resulting scalar field is that it presents a constant value
at the LCSs and a null value elsewhere. This property will play a fundamental role in the present work since the shock
regions are intended to be equally demarcated regardless of the shock strength.

2.2 The velocity field analogy

As previously stated in the introduction, a major issue regarding the refinement process is to determine the regions
where the abrupt variation of the fluid properties requires a finer mesh in order to achieve a better local accuracy.

Several shock sensors have already been proposed in the literature for a wide range of numerical methods. In the
present work the dilatation field (velocity divergence) was adopted following the works of Bhagatwala and Lele (2009)
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Figure 1. Schematic illustration for the calculation of the FTLE showing a target node and its satellite nodes.

and Premasuthan et al. (2010), since such variable reaches strong negative values at shock waves. Actually, shock waves
correspond to ridges of negative magnitude in the dilatation field.

It is now useful to imagine a velocity field given by the dilatation gradient vector field. The shock wave will act as a
repulsive structure to particles following this velocity field since the gradient vector will point to opposite directions on
each side of the shock wave. Thus, the FTLE based on progressive integration will provide a maximum value along the
entire shock wave. Obviously, the finer the mesh used to evaluate the FTLE, the better will be the resolution of the shock
location but also the more expensive will be the calculation. Figure 2 shows the dilatation field close to the shock wave
ahead a circular cylinder subjected to a supersonic flow. The dilatation gradient field is represented by the black arrows.
Note that particles following such (virtual) velocity field would be repelled away from each other depending on which
side of the shock wave they are placed initially.

Figure 2. Dilatation field of the shock wave ahead a circular cylinder subjected to a Mach-2.5 uniform flow. The vectors
represent the velocity field that (virtual) particles would follow according with the proposed analogy.

3. THE REFINEMENT PROCEDURE

Having in mind complex geometries, the use of unstructured meshes is a logical choice. They were created using the
software Distmesh (Persson and Strang, 2004), a Matlab c© code developed by Persson (2005). This subroutine is able
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to generate unstructured meshes for geometries specified via implicit functions, iteratively improving an initial mesh by
enforcing an equilibrium of forces at the element edges. It uses three basic inputs to generate any triangular mesh:

• The minimum mesh length h0;

• A scalar field fd(x, y) that corresponds to the distance of point (x, y) to the closest boundary, yielding a negative
value for points inside the domain and a positive value outside of it;

• The element size function fh(x, y) that corresponds to the relative local mesh length scaled by h0.

The function fd(x, y) is solely settled by the domain boundary geometry and, therefore, only needs to be determined
once. The minimum mesh length h0 is a global measure of the mesh coarseness and the principal parameter to be changed
in a mesh convergence analysis. Thus, the main objective here is to determine the element size function fh(x, y) so that
the vicinities of the shock waves are refined.

The mesh refinement procedure is based on an iterative process that follows basically four steps as illustrated by
Fig. 3. Beginning with a initial mesh which does not present any specific refinement besides that needed to provide a
better description of the boundary conditions, the first step is to use a numerical solver to calculate the solution which
represents a preliminary approximation to the desired flow pattern. In the second step, the flow properties, represented by
the elements averages stored at the triangles barycenters, are interpolated to an auxiliary equally-spaced Cartesian mesh,
in which all further calculations will take place (the finer the mesh, the more accurate the following calculations will be).

The velocity divergence field is then calculated and the FTLE operator can be used to determine the shock waves
location as the set of nodes (in the auxiliary mesh) whose calculated FTLE value exceeds a suitable cutoff value. A new
element size function f ih(x, y) is obtained based on the radial distance of any point (x, y) to the position of the marked
shock-related nodes. A new mesh is then generated using the Distmesh and the entire procedure is repeated until the shock
waves are sufficiently resolved in the numerical solution.

Figure 3. Schematic illustration showing the major steps of the refinement procedure.

It is worth mentioning that the initial mesh needs to have a minimum degree of refinement in order to provide good
results for the first shock demarcations. Since the shock location may slightly change between successive iterations due
to the coarseness of the intermediary meshes, it is advisable to perform a few steps of progressive refinement instead of a
single one.

4. NUMERICAL RESULTS

In order to verify the capabilities of the proposed methodologies, a numerical solver to the Euler equations of gas
dynamics was used to simulate the physics of inviscid compressible air flows. The code is based on the Discontinuous
Galerkin (DG) scheme for unstructured meshes. In the solver here use, the treatment of shocks can be performed by
means of artificial viscosity approaches or via an ENO-based limiting technique. The reader is referred to the works of
Moura (2012) and Silva (2012) for a detailed description of the DG formulation and of the shock-capturing approaches
available in the code. For the present research, the element-wise constant artificial viscosity model due to Person and
Peraire (2006) is employed. In addition, the high-order treatment of curved boundaries follows the work of Sevilla et al.
(2008), see also the report due to Moura and Silveira (2013) for implementation details.

Three test cases were chosen to demonstrate the refinement procedure proposed in section 3, namely, a transonic
airfoil, the supersonic flow past a circular cylinder and the forward facing step in a supersonic channel. All results were
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obtained with a polynomial order of 2 (which yields a third-order spatial accuracy at smooth regions), and with the
inviscid Lax-Friedrichs (Rider and Lowrie, 2002) and the viscous BR2 (Bassi et al., 1997; Brezzi et al., 2000) numerical
fluxes. It is important to say that the refinement methodology here proposed can be used as well with classical low-order
formulations.

4.1 The transonic flow over a NACA-0012 airfoil (cutoff analysis)

The first test case is the transonic flow past a standard NACA-0012 airfoil with sharp trailing edge. The chosen
freestream Mach number is 0.80 and the angle of attack is set to 1.50 degrees. The flow is solved within a circular domain
centered at the profile with a far-field outer diameter of 20 chords. Figure 4(a) shows a global view of the initial mesh
used for the refinement procedure. Each individual mesh thereafter will only differ on the near-shock refinement pattern.

(a) (b)

Figure 4. The chosen mesh for the cutoff analysis: (a) A global overview of the mesh used in the NACA-0012 transonic
simulations. (b) A closer look showing a block-shaped refined region in the mesh used for the cutoff analysis.

Probably the first thing someone might argue is that it is easier to use the dilatation field directly to build the element
size function. In order to address this issue, a block-like refinement was performed in the regions enclosing the shock
wave in the upper surface and the weaker one in the lower surface. The element sizing for both regions is uniform and the
value of h0 is the same. Note that the stronger the shock wave, the bigger the dilatation absolute value at that point. Thus,
to use the dilatation field directly would lead to a stronger refinement in the upper surface.

In order to compare the efficiency of both the dilatation field and the FTLE to determine the location of the shock
waves, the scalar fields were normalized by its maximum values. A point is said to belong to a shock wave if the
normalized scalar field value at that point is larger than an adjustable cutoff value. The right side of Fig. 5 highlights the
grid nodes that are marked by the FTLE as belonging to the shock wave for a given cutoff value; and the left side shows
the grid nodes that were marked by the dilatation field for the cutoff value that provide the same number of point marked
by the FTLE. Note that for the same number of grid nodes, the FTLE is capable of marking a longer extension of the
upper shock wave or even capture the lower surface shock wave when the dilatation field alone is not capable of.

Using the nodes previously marked by the FTLE, one can create the refined mesh presented in Fig. 6(a) and calculate
the flow past the profile one more time. The resulting Mach number field is presented in Fig. 6(b).

4.2 The supersonic flow past a circular cylinder

The second test case is the supersonic flow past a circular cylinder. The incident flow is directed downwards and has
a freestream Mach number of 2.5. Following the refinement steps presented in section 3, three complete cycles were
performed. Figure 7 presents all meshes created throughout the process. An interesting feature of these meshes is the
fact that the refinement degree is the same along the entire shock extension. This results from the FTLE property of
delivering a constant value along the shock wave no matter how strong it is. Other methodologies tend to furnish a
stronger refinement near the stagnation point where the shock transition is stronger so that the numerical results tend to
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(a)

(b)

Figure 5. The illustrations show the node positions which are marked for refinement using simply the dilatation field (left)
and the corresponding FTLE based on the dilatation field (right) for the same number of marked points: (a) Using a cutoff

of 40% of the maximum FTLE field magnitude. (b) Using a cutoff of 10% of the maximum FTLE field magnitude.

(a) (b)

Figure 6. The final solution: (a) The final used mesh; (b) The final Mach number field.
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display an increasing smearing of the shock wave away from the symmetry line. The successive solutions for both Mach
number and static pressure are presented in Fig. 8, where an expressive improvement in the shock resolution is achieved
by efficiently employing the refinement only along the shock wave.

4.3 The steady supersonic flow through a channel with a forward facing step

The third and last test case is a modification of the classical forward facing step problem by Woodward and Colella
(1984). The solution domain is two units high in the inlet section and six units long. The relative step height was modified
from 20% to 17.5% so that the problem admits a steady-state solution. For all cases the inlet Mach number is set to be 3.

The initial mesh is essentially uniformly spaced with only a local refinement near the geometric discontinuity repre-
sented by the step, as presented in Fig. 9(a). Figures 9(b) and 9(c) show, respectively, the velocity divergence and the
Mach number fields simulated in this initial Mesh. After 7 refinement cycles, the final mesh obtained is the one presented
in Fig. 10(a). The corresponding velocity divergence and Mach number fields, showed in Figs. 10(b) and 10(c), attest the
quality of the FTLE-based refinement procedure. Again, one can see that the shock waves where equally refined along
their entire extension despite their different local intensity.

5. CONCLUSIONS

This article presented a new methodology to perform adaptive mesh refinement focused on shock capturing that is
based on a dynamical systems operator named Finite Time Lyapunov Exponent (FTLE). After a brief introduction to the
fundamental concepts regarding the FTLE, a velocity field analogy was formulated that allowed the calculation of the
shock waves location by applying the FTLE operator to the gradient of the dilatation field (divergence of the velocity).
This procedure has shown to be more efficient in marking the shock location when compared to the direct use of the
dilatation field, since a narrower number of points is used to represent the discontinuity.

Numerical tests were presented that not only demonstrated the methodology efficiency but also the quality of the
resulting simulations. Due to the outstanding mathematical properties of the FTLE operator, the entire extension along
the shock waves is almost equally refined despite the local shock intensity which grants a uniformly sharp shock transition
throughout its entire extension.

Among future research possibilities, one can mention the extension to three-dimensional geometries and unsteady
flows. Moreover, a more accurate interpolation procedure can be devised, "between" the actual mesh and the auxiliary
mesh used to perform the shock location calculations, by using the high-order information from the polynomials within
each element. At last, an advanced methodology can be developed to automatically perform the iteration steps which are
currently carried out manually.
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(a) Initial mesh.

(b) 1st iteration.

(c) 2nd iteration.

(d) Final mesh.

Figure 7. Set of meshes corresponding to successive iterations of the refinement procedure.

ISSN 2176-5480

3998



Moura R.C., Silva A.F.C., Ortega M.A. and Silveira A.S.
Lyapunov Exponents and Adaptive Mesh Refinement for High-Speed Flows

(a) Initial mesh.

(b) 1st iteration.

(c) 2nd iteration.

(d) Final mesh.

Figure 8. Static pressure (left) and Mach number (right) fields for successive iterations of the refinement procedure
(corresponding to the meshes presented in Fig. 7).
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(a) Initial mesh.

(b) Dilatation field.

(c) Mach number field.

Figure 9. Initial mesh and solution for the forward facing step.
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(a) Final mesh.

(b) Dilatation Field.

(c) Mach number field.

Figure 10. Final mesh and solution for the forward facing step after 7 iterations.
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