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Abstract. Problems of fluid-structure interaction are of practical interest in several areas of engineering. The vortex-
induced vibration (VIV) phenomenon can be found in launch vehicles at the launch pad, transmission lines and risers used
in prospecting and exploration of oil in the oceans, among others. The prediction of this phenomenon is critical to the
success of the corresponding applications. The long term objective of the work here reported is to develop the capability
of analyzing fluid-structure interaction problems on oil-platform risers using CFD techniques. Thus, the specific research
included here aims to analyze the physical phenomena present in the wake of cylinders at different Reynolds numbers, as
well as their effects on the bodies present in the flow. Tests are performed with fixed cylinders and moving cylinders. In
the second case, both the situations in which the movement is prescribed and situations in which the cylinder is free to
move under the forces acting upon the body are analyzed. In the latter case, the cylinder is restrained by linear springs
which have their stiffness constants calculated in such a way to yield natural oscillating frequencies that correspond to
representative oscillating frequencies found in practice. The flows of interest are assumed to be adequately modeled by
the 2-D Reynolds-averaged Navier-Stokes (RANS) equations, with appropriate turbulence closures. The flow Reynolds
number, based on the cylinder diameter, is varied from 300 to 10,000. The results are compared to the available data and
show good agreement. However, it is observed that the 2-D simulations are not adequate for the practical applications of
interesting.
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1. INTRODUCTION

Vortex-induced vibration (VIV) is a particular case of the fluid-structure interaction phenomenon that affects many
fields of engineering and has been the subject of a large number of investigations, such as the work of Sarpkaya (1979),
Griffin and Ramberg (1982), Blevins (1990) and Williamson (1996). So far, there is a larger availability of data for low
Reynolds numbers (Re), while, for higher values of this parameter, it becomes increasingly more difficult to find reliable
data. One of the most studied cases of VIV is the flow around a free cylinder, due to its practical applications concerning
the dynamics of oil risers, chimney towers, high voltage cables and antennae, among others. The asymmetry of the vortex
shedding by the immersed body induces the structure’s vibration which, consequently, influences the vortex shedding.
The flow for Re < 49 is steady with symmetric vortex formation around the wake center line. Above Re = 49, the onset
of the laminar vortex shedding is observed, forming the von Karman vortex street. For Re > 260, vortices start to develop
in the spanwise direction of the cylinder, and the flow gradually looses its two-dimensional characteristics (Williamson,
1996).

The first lift measurement on a circular cylinder was carried out by Drescher (1956), who recorded the wall pressure
around an underwater cylinder with a Reynolds number of 110,000. Recent efforts to predict the lift and drag coefficients
of an oscillating cylinder under prescribed displacement, using numerical simulations were made by Lima e Silva et al.
(2003) and Dong and Karniadakis (2005), the latter using direct numerical simulation (DNS). There is also experimental
data from Norberg (2003). Nonetheless, the literature lacks lift and drag measurements for a freely vibrating cylinder,
with few exceptions, such as in the review of Khalak and Williamson (1999), who conducted a two degree of freedom
experiment for a Reynolds number around 6000.

The present work is focused on the numerical investigation of the fluid-structure interaction of a flow over a cylinder,
and the validation of a CFD tool through the comparison between the aerodynamic coefficients of an oscillating circular
cylinder and results of the literature, some of which are mentioned above. The cylinder is considered to be elastically
mounted and rigid, undergoing either forced or free oscillation. In the former case, the body is restrained to move
transversely or longitudinally to the flow, by a prescribed harmonic displacement of moderate amplitude. In the latter
case, the cylinder is free to move only in the crossflow direction and its motion is governed by a structural-dynamic
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equation. Moreover, the influence of Reynolds number and flow velocity on the aerodynamic coefficients of the cylinder
are analyzed.

2. NUMERICAL FORMULATION

The CFD tool used in this work is based on the 2-D Navier-Stokes equations, which represent a two dimensional
flow of compressible viscous fluid through a continuous medium in transient regime. In a finite volume approach, these
equations can be written in Cartesian form as

∂

∂t

∫
Vi

Qdxdy +

∮
Si

(Edy − Fdx) = 0 . (1)

In Eq. (1), V represents the control volume or the area, and S is the length of the edges of the element. The Q variable
is a vector of conserved properties, and the E and F variables are the flux vectors in the x and y directions, respectively.
These variables are written as

Q = [ ρ ρu ρv e ]
T , (2)

E = Ee + Ev and F = Fe + Fv . (3)

Here, Ee and Fe represent the inviscid flux, or Euler flux, and Ev and Fv represent the viscous terms. The Euler fluxes
are

Ee =


ρUc

ρuUc + p
ρvUc

(e+ p)Uc + xtp

 , Fe =


ρVc
ρuVc

ρvVc + p
(e+ p)Vc + ytp

 . (4)

In the previous equations, Uc and Vc are the contravariant velocity components, which, in unsteady cases, take into account
the mesh velocity components xt and yt as

Uc = u − xt , Vc = v − yt . (5)

The viscous flux vectors are written as

Ev =


0
τii
τji

τiiu + τjiu− qj

 , Fv =


0
τij
τjj

τijv + τjjv − qj

 . (6)

The nomenclature employed here is usual in the CFD community, where ρ is density or specific mass, u and v are
the Cartesian velocity components in the x and y directions, respectively, e is the total energy, p is the pressure, τij are
the components of the viscous stress tensor in Einstein’s notation, µ is the molecular dynamic viscosity coefficient, δij is
the Kronecker delta operator, and λ is the volumetric viscosity coefficient which is defined by the Stokes hypothesis. As
such, τij and λ are written as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij , λ = − 2

3
µ . (7)

Finally, the heat flux, qi, is obtained by Fourier’s law of heat conduction, where K is the coefficient of thermal conduc-
tivity.

qi = −K ∂T

∂xi
. (8)

2.1 Spatial Discretization

The numerical scheme adopted in this work is a cell centered finite volume method. The discrete value of conserved
flow field vector variables is computed for the i-th control volume as

Qi =
1

V

∫
Vi

QdV , (9)

where Qi is the mean value of Q in the instant of time t, for the control volume Vi. Equation (1) can be rewritten for each
ith cell as

∂Qi

∂t
= −

∫
Si

(Edy − Fdx) . (10)
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According to Mavriplis (1990), for each control volume face, flux information of flow field variables must be computed
from i-th and nb-th control volumes which share a k-th face. Hence, the flux computation is built as∫

si

(Edy − Fdx) ≈
si∑

k=1

[E (Qk) (y2 − y1) − F (Qk) (x2 − x1)] . (11)

The E (Qk) and F (Qk) fluxes are computed by a prescribed value, Qk, at the k-th face. The flux computation is, then,
accordingly distributed between i-th and nb-th control volumes. Moreover, all variables or parameters necessary at face
are computed by a simple averaged procedure,

Qk =
1

2
(Qi + Qnb) . (12)

Thus, the inviscid and viscous fluxes can be written for each control volume as

C (Qi) =

nf∑
k=1

[Ee (Qk) (y2 − y1) − Fe (Qk) (x2 − x1)] , (13)

V (Qi) =

nf∑
k=1

[Ev (Qk) (y2 − y1) − Fv (Qk) (x2 − x1)] . (14)

D(Qi) is the algebraic artificial dissipation operator proposed by Mavriplis (1990) as

D (Qi) = ξ2i,nbd
2 (Qi) − ξ4i,nbd

4 (Qi) . (15)

2.2 Time Discretization

The second-order accurate, five-stage, explicit hybrid Runge-Kutta scheme proposed by Jameson and Mavriplis (1986)
and by Batina (1991) is adopted for the time discretization. This scheme can be written as

Q
(0)
i = Qn

i ,

Q
(j)
i =

V n
i

V n+1
i

Q
(0)
i − Θj

∆ti

V n+1
i

[
C
(
Q

(j−1)
i

)
− D

(
Q

(j−1)′

i

)
− V

(
Q

(0)
i

)]
, (16)

Qn+1
i = Q

(5)
i ,

Although the present work considers a mesh moving rigidly with the body, this scheme already includes the necessary
terms to account for changes in cell area due to deformation of the mesh (Batina, 1991). The n and n + 1 superscripts
indicate property values at the beginning and the end of the n-th time step, respectively. The values used for the Θj

coefficients, as suggested by Mavriplis (1990), are

Θ1 =
1

4
, Θ2 =

1

6
, Θ3 =

3

8
, Θ4 =

1

2
, Θ5 = 1 . (17)

In Eq. (16), the convective operator, C, is evaluated at every stage of the integration process, but the artificial dis-
sipation operator, D, is only evaluated at odd stages. The viscous term, V , is computed only in the first stage and it
is kept constant throughout the remaining stages of the Runge-Kutta scheme. This is done with the objective of saving
computational time because the evaluation of the latter is rather expensive. As discussed by Jameson et al. (1981), this
type of procedure is known to provide adequate numerical damping characteristics while achieving the desired reduction
in computational cost.

2.3 Turbulence Model and Meshing Considerations

As previously discussed, the structural model considered in the present work is a 2-D cylinder section, which is
widely known and reported in the literature. The cases are simulated as both laminar and turbulent flows, given that the
current test cases are in the beginning of the laminar to turbulent transition. When running a turbulent case, the Spalart-
Allmaras turbulence model (Spalart and Allmaras, 1994) is used. It is implemented in the solver in accordance to the
formulation presented in Spalart and Allmaras (1994). That requires less computational efforts to be solved because, by
construction, less refined meshes are required near wall surfaces than compared to the more stringent mesh needs for
some two equations models. Naturally, the meshes employed for turbulent simulations are much more refined than those
used for laminar computations. The meshes used in the present work are generated with the ICEM CFD c© commercial
grid generator. As an example, Fig. 1 shows two views of the laminar mesh around the cylinder section.
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(a) Mesh view closer to the inner boundary. (b) Complete mesh, with 38208 nodes and 51799 volumes.

Figure 1. RANS solver mesh around 2-D cylinder section.

The dynamic system represented in the cylinder section is a rigid body with a plunge degree of freedom, transversal
to the flow. Unsteady calculations involve body motion and, therefore, the computational mesh and boundary conditions
should be somehow adjusted to take this motion into account. Two approaches are adopted here in order to create such
movement. The first approach is to prescribe the motion as part of the input of the simulation. Prescribed motions consist
of sinusoidal functions. The idea of this approach is to validate the numerical solver through frequency content analysis.
On the other hand, the second method is to integrate a structural-dynamic formulation coupled to the fluid dynamics
solver. In the present free cylinder model, the stiffness of the beam-like cylinder is represented by a linear spring. The
dynamics of the mass-spring system with a natural frequency ω can, then, be written as

d2ȳ

dt̄2
+

(
ω

ωr

)2

ȳ =
2CL

πµr
. (18)

Moreover, µr is the mass ratio and ωr is a reference frequency conveniently selected. The previous equation is, then,
marched in time using a four-stage Runge-Kutta method which can be written as

{y}nrk1 = [A] {y}n + {Q}

{y}nrk2 = [A]

(
{y}n +

∆ts
2
{y}nrk1

)
+ {Q}

{y}nrk3 = [A]

(
{y}n +

∆ts
2
{y}nrk2

)
+ {Q}

{y}nrk4 = [A] ({y}n + ∆ts {y}nrk3) + {Q}

{y}n+1
= {y}n +

∆ts
6

({y}nrk1 + 2 {y}nrk2 + 2 {y}nrk3 + {y}nrk4) . (19)

Here, [A] and {Q} represent the system dynamic matrix and forcing vector, respectively, when the problem is formu-
lated in state space. Finally, the far-field boundary conditions are adjusted in order to account for the motion as reported
in Marques and Azevedo (2008). In the present work, the authors have selected to move the mesh rigidly with the in-
ner boundary. This approach is less computationally expensive than employing a deformable mesh, with a fixed outer
boundary, that accommodates for the movement of the inner boundary. However, one must bare in mind that the present
approach is not as general as the aforementioned deformable mesh procedure, since it can only be used when the structural
modes involve rigid body motions, as in the present case. Regardless of the type of motion being calculated, the mesh
velocity components can be calculated as

xtj =
xn+1
j − xnj

∆t

ytj =
yn+1
j − ynj

∆t
. (20)
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The new cell areas are determined employing the geometric conservation law concept (Thomas and Lombard, 1979),
where the total area conservation is imposed in a similar manner to the other flow conserved variables.

3. RESULTS AND DISCUSSION

3.1 Fixed Cylinder Analysis

The initial tests performed consider a fixed cylinder with the purpose of evaluating the accuracy of the present for-
mulation in the analysis of a low Reynolds number flow. Tests are performed at a Re = 300 flow, where the Reynolds
number is defined in terms of the cylinder diameter. Results for the drag coefficient are compared with the literature as
shown in Table 1. The data in Table 1 include the results of Mittal and Balachandar (1997), which brings experimental
data, and of Lima e Silva et al. (2003), which performed DNS calculations for the same configuration. The other data
included in Tab. 1 are extracted from Lima e Silva et al. (2003).

Table 1. Mean drag coefficients for a Reynolds number 300 flow over a circular cylinder.

Present Lima e Silva Park et al. Sucker Ye et al. Mittal e
work et al. e Brauer Balachandar
1.20 1.27 1.37 1.22 1.38 1.22

Another test, performed at a Reynolds number of 1000, has results compared to literature data in Tab. 2. Strouhal
number, St, lift coefficient, CL, and mean and maximum drag coefficients, calculatd in the present work, are compared
to a two-dimensional compressible RANS simulation (Rohde, 2011). All properties analyzed have good correlation with
the literature data. It is important to notice that Rohde (2011) used a formulation that is similar to the present work. The
cited paper solves the compressible, viscous, two dimensional Navier-Stokes equations without turbulent modeling as in
the present case.

Table 2. Aerodynamic properties for the flow over a circular cylinder at Re = 1000.

Propriety Reference Present Work Difference (%)
C` 1.365 1.364 0.1

Cdmean 1.462 1.414 3.3
Ampl. Cd 0.188 0.185 1.5
Cdmax 1.652 1.599 3.2
Stcalc. 0.239 0.235 1.8

3.2 Prescribed Motion Analysis

In order to validate the mesh motion algorithm, the results of prescribed motion in the transversal direction, with a
moderate amplitude of 0.3 diameters, are compared to the commercial software CFD++ c©. Both cases are simulated with
dimensionless frequency (f0d) /U = 0.14 and Reynolds number Re = 1000. A prescribed sinusoidal motion, given by
Y (t) = A sin (2π f0 t), is imposed to the cylinder. Table 3 shows the values of the r.m.s. (root mean square) lift and mean
drag obtained. It is observed that the maximum error is only 7%, which demonstrates the good accuracy of the results.
As the lift and drag coefficients undergo large changes in time, these coefficients are converted to the frequency domain,
through the fast Fourier transform (FFT). The comparison of the magnitude and the frequency content of the unsteady
lift and drag coefficients, for both CFD tools, can be visualized in Fig. 2. As noticed from this figure, the corresponding
coefficient results show a very good correlation between the solutions with the two different codes. In other words, the
spectra of lift and drag coefficients are in good agreement.

Once the mesh motion algorithm is validated, several tests for prescribed motion are performed. The tests consider
different frequencies for a fixed Reynolds number of 10,000. As Re = 10,000 lies in the transition range, the simulations
are carried out not only with a laminar model but also with the turbulence model of Spalart and Allmaras (1994). These
test cases, as well as their results, are summarized in Tab. 4. The present results are compared to the DNS data of Dong
and Karniadakis (2005) and the empirical results of Gopalkrishnan (1993) in Fig. 3. As expected, the results using the
turbulence model are considerably nearer to the reference than the laminar results, for most cases. It can be noticed that
the drag coefficients for the laminar and turbulent model are slightly over-predicted and the lift coefficients are under-
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(a) Drag coefficient response. (b) Lift coefficient response.

Figure 2. Frequency content of the aerodynamic coefficients for a Re = 1000 flow over a cylinder with prescribed motion.

Table 3. Comparison of aerodynamic coefficients for the prescribed motion test case for a Re = 1000 flow over a cylinder.

Coefficient In-house Code CFD++ Difference (%)
Cdmean 1.478 1.594 7
C`rms 0.985 1.034 5

predicted for the highest frequencies. Overall, the results are reasonably close to the literature, with the exception of
the M2 case. A possible reason for this behavior is that the frequency for the M2 case is in a range of frequencies that
go through a sharp increase in the coefficients and are, therefore, more susceptible to error. Moreover, the present work
performs 2-D simulations while the cited references use 3-D configurations. Wu et al. (1996) indicate that the onset of
3-D instabilities, such as vortex formation in the spanwise direction, occurs for Re > 200. As indicated, these 3-D effects
are not accounted for in the present work. A few simulations with forced oscillation in the transverse direction are also

(a) Drag coefficient. (b) Lift coefficient.

Figure 3. Comparison of the aerodynamic coefficients for a prescribed cylinder oscillation at Re = 10,000.

conducted in order to demonstrate the capability of the code to allow for oscillations in this direction as well. The results
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Table 4. Transversal oscillation results.

Case Re Amplitude (Y/d) f0U/d Cdmean C`rms
M1 1,000 0.3 0.14 1.478 0.985
M2 10,000 0.3 0.14 1.623 1.288
M3 10,000 0.3 0.17 1.624 1.184
M4 10,000 0.3 0.21 1.598 1.546
M5 10,000 0.3 0.25 1.511 1.804
M6 10,000 0.3 0.30 1.750 1.825

are shown in Tab. 5.

Table 5. Longitudinal oscillation results.

Case Re Amplitude (X/d) f0U/d Cdmean C`rms
M7 10,000 0.1 0.05 1.698 1.308
M8 10,000 0.1 0.10 1.733 1.329
M9 10,000 0.1 0.15 1.635 1.241

3.3 Free Motion Analysis

The simulations for free motion are conducted in such a way that, initially, calculations are performed for a fixed cylin-
der until the aerodynamic solution reaches a periodic state. This state provides the initial condition for the free cylinder
calculations. Then, the cylinder is allowed to oscillate in the transversal direction by the influence of the aerodynamic
forces. From this point on, the structure is considered to be constrained by linear springs in order to model the cylinder
stiffness. The frequency response ratio is defined as

f∗ =
f

fn
, (21)

where f is the body oscillation frequency. The reduced velocity is expressed by

U∗ =
2πU

fnd
, (22)

where d is the cylinder diameter and, in both equations, fn is the natural frequency of the structure. Since the freestream
flow velocity, U , is constant, as are most of the terms in Eq. (22), the only free parameter is the natural frequency, which
in turn is a function of the spring stiffness.

Figure 4 (a) illustrates the behavior of the frequency response ratio, f∗, as a function of the reduced velocity, U∗.
The results are indicating that, with the increase of reduced velocity, the vortex shedding frequency becomes closer to
the natural frequency of the system and, hence, the two frequencies synchronize. This is the well known definition of
the lock-in phenomenon (Williamson and Govardhan, 2004). The onset of the lock-in is characterized by a resonance
and a hysteresis which was first demonstrated by Feng (1968). As illustrated in Fig. 4 (b), in the lock-in region, the
amplitude undergoes a sharp increase. The behavior of f∗ in the synchronization regime is similar to what is reported in
the experimental work of Khalak and Williamson (1999) for low mass ratios. The results for dimensionless amplitude,
A∗ = Amax/d, as a function of the reduced velocity, are compared in Fig. 4 (b) to 2-D and 3-D DNS and experimental
results obtained by Blackburn et al. (2000). Three response branches are clearly observed from this plot: the initial
excitation, the upper and the lower branches.

The initial excitation branch is characterized by an intense growth ratio which quickly reaches the highest values ofA∗

in the upper branch. The third (lower) branch displays a more moderate behavior in which the amplitude slowly decreases
as U∗ is incremented. There is also an abrupt change in the phase angle between the lift force and the body displacement,
ranging from approximately 0◦ from the previous modes to 180◦. Both the experimental data and the 3-D simulation
results exhibit reasonable correlation, differently from the 2-D ones. Although one expects certain discrepancies between
2-D and 3-D simulations, because of the aforementioned three-dimensional effects, the difference observed is much more
significant than anticipated. This fact is also corroborated by Tab. 6 that shows peak amplitude data for 2-D, 3-D and
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empirical tests, made by various authors. The peak amplitudes obtained in 2-D simulations are substantially under-
predicted when compared to the three-dimensional calculation results, as well as being incapable of accurately estimating
the response branches.

Figure 4 (b) also shows that there is good agreement between the 2-D results of Blackburn et al. (2000) and the
present work, especially in the range 4.5 < U∗ < 6.5. Although the agreement between the results is not as good in
the 3 < U∗ < 4 range, it is fair to state that there is good overall correlation between the 2-D results. It is noteworthy
to emphasize that Blackburn et al. (2000) performed DNS calculations, while the present work is based on the RANS
equations with the Spalart and Allmaras (1994) turbulence model. It is known that the RANS formulation is not very
effective to simulate flows in the laminar-turbulent transition regime, especially when there is a large region with a sepa-
rated flow. RANS turbulence models typically consider the flow either fully turbulent or laminar, and this does not yield
a good approximation in the transition regime. For this reason, a certain error is expected in these results.

(a) Frequency response ratio. (b) Dimensionless amplitude.

Figure 4. Frequency ratio and peak amplitude results for a Re = 556 flow over a free oscillating cylinder.

Table 6. Peak amplitude data for a free oscillating cylinder.

Author Method Re m∗ζ A∗

Hover et al. (1998) Experimental 3,800 0.04 0.80
Blackburn et al. (1995) Experimental 6,000 – 35,000 0.052 0.95

Fujarra et al. (1998) Experimental 14,410 – 50,380 0.036 1.01
Blackburn et al. (2000) Numerical 3-D 556 0 0.46

Shields et al. (2001) Numerical 2-D 100 0 0.59
Blackburn et al. (2000) Numerical 2-D 556 0 0.47

Present Work Numerical 2-D 556 0 0.48

The pattern for the vortex wake mode formation, from free vibration experiments, observed by Brika and Laneville
(1993), is the 2S mode for the initial branch of the response and the 2P mode for the lower branch. However, Fig. 5,
which illustrates the vorticity field around a cylinder for different values of U∗, indicates a completely distinct standard for
the vortex wake mode formation in the present results. Both the initial and the lower branches have a clear correspondence
with the 2S mode, and the upper branch seems to be a transition between the 2S and the P+S modes. The 2-D simulations
provide considerably smaller amplitude peaks than the 3-D ones, especially in the lower branch region. Moreover, the
results seem to be somewhat shifted to the left when compared to the 3-D results, in the curve presented in Fig. 4 (b).
Probably, these are the reasons why different vortex wake modes are obtained in the present simulation, compared to the
data from Brika and Laneville (1993).
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(a) U∗ = 3.

(b) U∗ = 4.5.

(c) U∗ = 6.

Figure 5. Vorticity field for the flow over a circular cylinder atRe = 556. Vorticity magnitudes are shown in dimensionless
form.
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4. CONCLUSIONS

In accordance with the main objective of the present work, the authors have analyzed fluid-structure interaction prob-
lems, namely vortex induced vibration, using CFD techniques. Simulations were conducted with a 2-D RANS solver
developed in-house and it is shown that the code is capable of accurately capturing the vortex wake created by the an-
alyzed structure. The model of study, a 2-D cylinder, is considered to represent a section of a long cylindrical pipe
subjected to a crossflow. The flow conditions studied in the present paper consider a Reynolds number range such that
300 < Re < 10, 000, where Re is based on the cylinder diameter.

Even thought the Reynolds number range of the present investigation lies in the lower end of the laminar-turbulent
regime transition, the calculations using the Spalart-Allmaras turbulence model provided much more accurate results than
laminar simulations of the prescribed motion test case. Nevertheless, it would be interesting to compare both approaches
in a wider range of Reynolds numbers and, also, using different turbulence models.

The prescribed motion approach had been successively validated with literature data and through comparison with the
CFD++ commercial software. The capability of the present tool to properly simulate free vibration motion is also demon-
strated through the comparison with data from the literature. However, it is clearly observed that the 2-D simulations
are not adequate to capture all the physical mechanisms present in these flows, even for such moderately low Reynolds
numbers. Future work will address similar flows, but using a 3-D formulation. It is expected that the inclusion of 3-D
effects will help improve the understanding and the capability of capturing the physical phenomena present in such finite
cylinder flows.
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