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Abstract. This work aims to optimize the gains of an active control with linear quadratic regulator (LQR), applied on a 
complete vehicle model under a sinusoidal road surface profile, for reduction of RMS accelerations transmitted to the 
driver’s seat and the vehicle body. Since the gain of LQR control is formulated from the matrices Q and R, the 
procedure determines the optimal control matrices that minimize the transmitted RMS accelerations. The model is 
analyzed in the time domain through the state-space formulation, and the optimization process is implemented with the 
method of genetic algorithms. The parameters Q and R, which provided the best gain for minimizing the optimization 
problem, were able to reduce the RMS accelerations more than 90% when compared to passive situations or similar 
active control from the literature. Finally, we analyze the influence on the other degrees of freedom and the necessary 
forces for the obtained results. 
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1. INTRODUCTION 
 

The design of an active control system can be done basically in two ways: by feed forward and by feedback. The 
feed-forward control uses an input signal to generate the actuator force in the sense of reducing the disturbance of the 
system. The feedback control system uses the measured signals to generate a signal that attenuates the disturbances 
(Hansen and Snyder, 1997). The feed-forward control shows difficulties regarding the availability of signals to generate 
forces. This makes the feedback control more used in many applications. 

According to Savaresi and Taneli, 2010, the first active control to be introduced in the automotive industry was the 
braking control. The anti-lock braking system (ABS) has become a basic requirement in modern cars. This technology 
arose from the industry requirement in creating control equipment smaller and more efficient, with quick response and 
low transmission error after measuring the involved parameters. 

Active controls in vehicles work independently, because there is no interaction between the control systems applied 
to suspension, steering and braking; then working with decoupled systems makes the control action easier to be 
implemented. However, recent research is being developed to ensure that systems interact, through the Global Chassis 
Control (GCC), where the complete vehicle is a single object, so the full control can be achieved (Preumont, 2011). 

In the classical suspension model, spring and damper are the components that regulate energy of the system, storing 
and dissipating it, respectively. Therefore, the control should act similar to the spring and damper actions, regulating its 
forces or defining a design that provides both forces. 

According to Isermann, 2003, the classification of the controller can be related to input power and the bandwidth of 
the actuator. Three key features should be noted: the range of control, that is, the range of force provided by the 
actuator, the bandwidth that the controller works, that is, how fast or slow can be the employment of force, the force 
required which comprises the control action and the bandwidth of the actuator. 

Due to the distinct characteristics of controls, the ability of operation of each one is different, since each inertial 
component of the vehicle moves with different frequencies according to the degree of freedom considered. The vehicle 
has two bands of working, the frequency of the car body (1-5 Hz) and of the wheel (15 - 20 Hz). 

Although there are two design variables for controlling, available technologies for control are usually designed as 
shock absorbers, i.e, electronic dampers. However, some recent research have sought to regulate the stiffness of the 
spring in control design (Du and Zhang, 2011). 

Works of Zago (2010) and Shirahatt (2008), to name a few, after applying control by linear quadratic regulator 
(LQR) yielded significant gains in vehicle models compared with systems without control. In other way, works of 
Robandi et. al. (2000) and Ghoreishi et. al. (2011) suggest that the search for elements of the matrices Q and R can 
improve the dynamic response of the analyzed systems. These studies have motivated this work to find elements of the 
matrices Q and R that can improve the response of a vehicle model in a specific road. 
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Thus, the overall goal of the work is to implement an active control LQR for attenuation of accelerations in a 
passenger vehicle with 8 GDL under a sinusoidal road profile. Since gains provided by the solution of the LQR depend 
on the matrices Q and R, we find the elements of these matrices, through the genetic algorithm, so the acceleration of 
the vehicle can be as small as possible. 
 
2. COMPLETE VEICULAR MODEL WITH ACTIVE CONTROL OF SUSPENSION  

 
Many models are available in the literature to represent the movements of vehicles, involving rolling around the x-

axis, pitching around the y-axis  and vertical displacements. For obtaining the influence of the unsprung mass over the 
vertical movement of the body, a model with 2 degrees of freedom (DOF) would be sufficient (Wong, 2001). For 
vibration analysis in the body and in the driver's seat, we need a more complete model having a degree of freedom 
added to the 7 DOF usually proposed as a full vehicle. 

There are basically two ways to provide better comfort to passengers: choice of optimal parameters of suspensions 
or design of a control system of vibrations. The actuators responsible for generating the control force can be positioned 
according to the designer's desire; however, in general they are placed between the body and suspension.  

In this work, the suspensions are considered independent. This is generally ensured by torsion bars, which are 
stabilizing components, and their function is to increase the stiffness of the shaft and reduce the tendency for body roll, 
guaranteeing greater stability of the vehicle in curves (Leal et al, 2012). The model also considers the body's center of 
gravity shifted to the rear, configuration previously adopted in other works (Drehmer, 2012; Shirahatt, 2008). The tire is 
represented by a spring without damping, and having point contact with the ground. The camber effect is ignored. 

 
2.1 Suspension model of complete vehicle of 8 DOF 

 
Equations (1) to (8) describe the dynamic equations of the 8 DOF complete vehicle model, as shown in Figure 1. In 

this work, values of stiffness, mass and damping are provided by Drehmer (2012), who used processes of heuristic 
optimization to find the best values for these parameters for a vehicle submitted to different track conditions, in order to 
provide the passenger the smallest possible vertical acceleration. Thus, the problem in analysis starts from a deep 
analysis of possibilities of passive vibration control. 

 

 

Figure 1. Vehicle model of eight degrees of freedom. 
 

Where aaa k,c,m  are parameters of mass, damping coefficient and stiffness for the driver’s seat, and aa yx ,  are 

distances from the seat to the vehicle’s center of gravity, which is considered coincident with the origin of the 
coordinate system.  and a b  are distances from the front and rear part of the vehicle, respectively, to its CG. The 

distance w2  is the vehicle’s width, and parameters 4321 ,,, mmmm  are masses, 4321 ,,, cccc  the damping coefficients 

and 4321 ,,, kkkk  the spring stiffness in the left front (1), rear left (2), right front (3) and rear right (4) suspensions.  

 
DOF: vertical displacement of seat, az : 
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DOF: vertical displacement of carbody, cz : 
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DOF: carbody roll, φ : 
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DOF: carbody pitch, θ : 
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DOF: vertical displacement of left front suspension, 1z : 

)()()( 1111111111 zubktuawzzcawzzkzm cc −+−−+−+−+−= θφθφ &&

&&&&  (5) 
 

DOF: vertical displacement of left rear suspension, 2z : 

)()()( 2222222222 zubktubwzzcbwzzkzm cc −+−++−+++−= θφθφ &&

&&&&  (6) 
 

DOF: vertical displacement of right front suspension, 3z : 

)()()( 3333333333 zubktuawzzcawzzkzm cc −+−−−−+−−−= θφθφ &&

&&&&  (7) 
 

DOF: vertical displacement of right left suspension, 4z : 

)()()( 44414444444 zubkubwzzcbwzzkzm cc −+−+−−++−−= θφθφ &&

&&&&  (8) 
 

Equations (1) to (8) are displayed as a matrix equation according to Equation (9). 
 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } 1x44x81x44x81x88x81x88x81x88x8 ttttt ubKuFqKqCqM e+=++ &&&  (9) 
 

Where the degrees of freedom are exposed as the vector { }q  in Equation (10): 

 

{ } [ ]Tca zzzzzz 4321 θφ=q  (10) 
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2.2 Model of vibration control system 
 

The control assumes that all state variables can be read in real time and the actuator applies necessary forces 
instantaneously. Given the form of a second-order system shown in Eq. (9), this may be reduced to the first order, as 
described below. First of all, the variables are changed as shown in Eq. (11): 

 

{ }
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It follows the established relation of Eq (11), but now described in Eq. (12): 
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(12) 

 
In this model there is the continuous influence of disturbances of the road ub , whose incidence matrix Ke  

considers the linear behavior of tires to translate disturbances in input force to the system. The incidence matrix F  
incorporates the positions of the actuators that influence the system's response to actuation of the control. The equation 
for numerical integration, where T is the time step and k the index for discretization becomes: 

 

( ){ } [ ] ( ){ } [ ] [ ][ ][ ] [ ] [ ][ ][ ]ubBlIAuBIAxx AAA −+−+=+ −− T
k

TT eekek 111  (13) 

 
The LQR control is a regulator which provides gain values to the system, which converted in forces, will tend to 

minimize the system energy. The control formulation seeks to reduce the system energy through minimization of a 
quadratic functional, shown in Eq. (14), which provides information of displacements and velocities of the system, 
beyond the acting forces. 

 

( )∫
∞

+=
0

dtJ TT RuuQxx  (14) 

 
The functional is regulated by the matrices Q and R, where the increase in Q values decreases the state variables, 

and the decrease of the R values increases the control forces imposed to the system. However, little is known about the 
analytical correlations between the system to be controlled and the values assigned to these matrices, and each 
assignment of values to the system provides different gains. 

Matrices Q and R are weights that influence directly the solution of the problem and consequent gain calculation, 
which takes place through the solution of Riccati equations for continuous systems. According to Kwon and Bang 
(1997), the formulation of the functional J can be based on the use of Lagrange multipliers to find the optimum, which 
is called the Hamiltonian of the control problem according to Eq (15). 

 

{ } { } { } { }( ) { } [ ]{ } [ ]{ }( )uBxAuRuxQx +++= TTT
λH

2

1
 (15) 

 
And its derivative with respect to the state variables and control forces gives Eq. (16) for the control ( )tu : 

 

( ) [ ] [ ] { }λTt BRu 1−−=  (16) 

 
Also , according to Kwon and Bang (1997), the solution through Lagrange multipliers is difficult to compute. A 

widely used method for solution considers the Lagrange multipliers as being proportionals to state variables, becoming: 
 
{ } [ ]{ }xS=λ  (17) 
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where [ ]S  is the Ricatti matrix. Consequently, control forces also will have linearly proportional relation with the state 
variables, as given below: 

 
( ) [ ]{ }xGu −=t  (18) 

 
Where the gain matrix [ ]G  is provided by the control to the state variables. After mathematical manipulations, the 

solution of Riccati for gain calculation is obtained by the following algebraic equation: 
 

[ ][ ] [ ] [ ] [ ][ ][ ] [ ] [ ] [ ]QSBRBSSAAS +−+= − TT 10  (19) 

 
After founding the [ ]S  value, it will be replaced in Eqs. (17) and (16) to obtain forces as  function of time.  
 

3. CONSTRAINTS ON THE OPTIMIZATION PROBLEM 
 
The simulation in vehicle dynamics needs some constraints in order to be close to actual situation; in this context 

this work show some constraints, one relative to travel limits of suspensions and another respect to permanent contact 
between tire and track. The control system design of a linear quadratic regulator involves the minimization of the 
quadratic cost functional: 
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(20) 

 
where the matrix Q (matrix of penalties of the state variables) is definite non-negative and R (penalty matrix of control 
actions) is definite positive. A widespread form is to establish that the matrices Q and R are diagonal and to choose 
large values for the variables you want to be small in the time domain (Gabasa, 2009). As shown above, the LQR 
control has dependence on the defining parameters, thus we look for parameters that minimize the functional J while 
satisfying constraints inherent to the problem. 

According to Gabasa, 2009, the optimization of the objective function J does not guarantee that other requirements 
of the system are met, and to solve them penalties are created each time the system violates some constraint. Thus, the 
constrained optimization with penalties becomes an unconstrained optimization problem. The first constraint considers 
that the vehicle should always have the four tires in contact with the ground, and the constraint equation is given by:  
 

δ<− bii uz
 (21) 

 
where δ  expresses the initial displacement of the suspensions after static equilibrium of the vehicle due to the action of 
gravity. That is, the equation shows that during simulation, where gravitational forces are neglected, if the displacement 
between the suspension and the floor is higher than the initial displacement caused by the gravitational force, the tire 
loses contact with the floor. 

The second constraint regards the limit of suspension travel, where only the upper limit was considered to hit 
the stop, being determined by the variable max_displ . 
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(22) 

 
According to Gillespie (1992), the displacement of the suspension is basically determined by the weight of the body 

on the suspension springs, and considering they are in parallel it would be only: 
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However, this is true when there is no roll and pitch simultaneously with the vertical movement. In this case, the 

interaction follows Eq. (24). 
According to Gillespie (1992), the upper limit found in vehicles must be at least 0.127 m to absorb at least 0.5 g 

without hitting any stop. The author mentions that most passenger vehicles have the upper limit around 0.177 to 0.2032 
m, being this latter value of maximum displacement (displ_max) considered in this work. 
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Finally, the optimization problem with constraints becomes: 
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The penalty increases as the constraints are violated and according to the degree of violation occurred. The designer 

also has the option of applying an additional weight ε  to the penalty. In equation (26) is described the way in which the 
constraints are applied in the optimization problem. 

 

( ) ( ) ( )

1

2

1 1

2 2

given that

,

_ .

if 0, ;

if 0, ;

* 1 *

i b

si

R z u

R z displac max

R penalty penalty R

R penalty penalty R

f x f x penalty

δ

ε

= − −
= −

> = +
> = +

= +

 

(26) 

 
4. RESULTS AND DISCUSSION 

 
The simulation of the complete model of 8 DOF proposed by Shirahatt et al. (2008) is subject to some limitations 

due to the lack of enough information about the matrices Q and R to determine the gain, and also they don’t mention 
how to search them. Another problem was relative to some mistake to satisfy the right-hand rule in their orthogonal 
axes XYZ, which influences the formalism of equations that describe the dynamic behavior of the system. However, this 
paper was the closest to be used to make a direct comparison with our results, since the input data is adequate for a 
complete model vehicle 

In this work we use the same data given by Shirahatt article (2008) to simulate the passive system and the active 
system controlled by LQR, according to Table 1: 

The disturbance used is similar to sinusoid proposed by Zago et al. (2010), but for this case there is a lag between 
the input excitation of front and rear wheels. According to Shirahatt et al. (2008), there were also imposed lags between 
the left and right tires, as the sinusoids were tilted for a time of 0,2 s. 

The function used to determine the profile is given by : 
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Table 1. Data used for model simulation. 

 

Variable Description Unit Optimal value 

   Passive Active 

ka Stiffness of the seat N/m 98935 95161 
k1 Stiffness of the left front suspension N/m 96861 78158 
k2 Stiffness of the left rear suspension N/m 52310 41731 
k3 Stiffness of the right front suspension N/m 96861 78158 
k4 Stiffness of the right rear suspension N/m 52310 41731 
ca Seat damping N s/m 615 415 
c1 Damping of the left front suspension N s/m 2460 2012 
c2 Damping of the left rear suspension N s/m 2281 1848 
c3 Damping of the right front suspension N s/m 2460 2012 
c4 Damping of the right rear suspension N s/m 2281 1848 
kt Stiffness of front and rear tires N/m 200000 200000 
ma Mass of seat kg 100 100 
mc Sprung mass kg 2160 2160 
m1 Left front unsprung mass kg 85 85 
m2 Right front unsprung mass kg 60 60 
m3 Left rear unsprung mass kg 85 85 

m4 Right rear unsprung mass kg 60 60 

Ix Inertia mass moment for rolling axis kg·m2 946 946 

Iy Inertia mass moment for pitch axis kg·m2 4140 4140 

a 
Distance between the front of the vehicle and the center of gravity 

of the sprung mass 
m 1.524 1.524 

b 
Distance between the rear of the vehicle and the center of gravity 

of the sprung mass 
m 1.156 1.156 

w Half width of the sprung mass m 0.725 0.725 

xa Distance X from seat to CG m 0.234 0.234 

ya Distance Y from seat to CG m 0.375 0.375 

Source: Shirahatt et al. (2008) 

Being 31,ub  the excitations on the front tires and 42,ub  the excitations on the rear tires; the height of the wave 

m 05,0=h , the wavelength m 20=λ  and the vehicle velocity m/s20=v . The lag between front and left tires is 

given by the variable 






 +=
v

baτ , and the angular frequency is defined by 






=
λ
πω v2

. 

The determination of matrices Q and R can also be made by the optimization process, in this work is performed by 
GA. To check the influence of the modified parameters on the dynamic response, the first search using GA modifies 
equally all terms of matrices Q and R, as provided below. 

 

16 16

4 4

x

x

α
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=
=

Q I

R I
  

 
The formulation of the active control by LQR enables different forms and responses of the objective function. The 

objective function composed by the RMS value of accelerations of the truck and the driver's seat was the best one for 
reducing vibrations throughout the vehicle, as shown below. 
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Another possibility of composing the matrix Q is through variations of diagonal values referring to displacements, 

i.e., the first eight positions, and sets the remaining ones with unit values. The procedure is similar to the scheme of trial 
and error but it leaves free for finding the diagonal values of matrix R. 
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The limits used for the matrix elements were set from the concept that high Q values tend to decrease the values of 

the state variables, and low R values raise the intensity of control forces. Since the simulations on models proposed by 
Zago et al. (2010) and Shirahatt et al. (2008) showed values for Q variables in the order of up to 1012, it was decided to 
leave the search space of this parameter for high values and to enable the algorithm test small values for the elements of 
R. It follows the second proposal for the optimization problem. 
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Table 2 shows the parameters used in the optimization procedure by GA for both proposals. The higher number of 

individuals for the second proposal was necessary to obtain a lower coefficient of variation estimated in Eq. (29).  
 

Table 2. Determination of GA for the optimization process. 

 
Parameter Proposal 1 Proposal 2 

Number of variables 2 12 
Population size 20 individuals 30 individuals 

Objective function order Lower value of the function Lower value of the function 
Selection Roulette  Roulette 
Mutation Uniform Uniform 
Crossover Scattered Scattered 

 
The analysis of these responses is performed according to RMS values of acceleration of the body and seat, and 

from the maximum displacements and accelerations of other degrees of freedom. Table 3 lists values of responses for 
both proposals and its comparative with results obtained by Shirahatt et al. (2008). 
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Table 3. Optimal results obtained for the two proposals. 

 
Parameter Passive value Active value Active value  Active value  

 Shirahatt et al. (2008) Proposal 1 Proposal 2 

Objective function 2sm29330 −⋅.  20.0513m s−⋅  20.3970m s−⋅  3 21.3117 10 m s− −⋅ ⋅  

Rms az&& (seat’s acceleration) 2sm 30320 −⋅.  
20.0534m s−⋅  20.3786m s−⋅  4 29.0050 10 m s− −⋅ ⋅  

Rms cz&& (body’s acceleration) 2sm28340 −⋅.  20.0492m s−⋅  20.4154m s−⋅  3 21.7229 10  m s− −⋅ ⋅  

Max az&& (seat’s acceleration) 2sm08492 −⋅.  20.2350m s−⋅  21.3640m s−⋅  3 23.5938 10 m s− −⋅ ⋅  

Max cz&& (body’s acceleration) 2sm91721 −⋅.  20.2268m s−⋅  21.4939m s−⋅  3 27.8870 10 m s− −⋅ ⋅  

Max az (seat’s displacement) m07250.  0.0187 m 0.0560m 41.1017 10 m−⋅  
Max cz (body’s displacement) m 06900.  0.0181m 0.0615m 42.1577 10 m−⋅  

Maxφ  (rolling angle) °00960.  0.0029°  2.0854°  0.0203°  

Maxφ&&  (roll acceleration) 20.5041rad s−⋅  20.0888rad s−⋅  21.8133 rad s−⋅  20.0180 rad s−⋅  

Maxθ  (pitch angle) °02220.  0.0025°  1.2884°  0.0156°  

Maxθ&&  (pitch acceleration) 2srad 17001 −⋅.  
20.0582rad s−⋅  20.9654rad s−⋅  20.0164rad s−⋅  

Max 1z (front left displacement) 0.0383m 0.0320m 0.0569m 0.0581m 

Max 2z (rear left displacement) m01220.  0.0305m 0.0513m 0.0419m 

Max 3z (front right 

displacement) 
0.0290m 0.0293m 0.0522m 0.0431m 

Max 4z (rear right displacement) 0.0125m 0.0288m 0.0595m 0.0547 m 

 
The optimal control of the proposal 2 allowed to decrease the RMS value of acceleration in the driver's seat by 99% 

compared to the situation without control, and 98% for the control proposed by Shirahatt et al. (2008). The RMS value 
of the body acceleration showed a decrease of 99% compared to the situation without control, and 96% compared to the 
control proposed by the same author. The maximum values of accelerations in the seat and body followed the same 
percentage gain, the same occurs for the maximum angular accelerations and displacements of seat and body. However, 
the maximum angular displacement of pitch and roll provides a 111% increase and a 30% decrease, respectively, with 
respect to the situation without control. 

The objective function for the second optimization proposal showed an interval of variations for a sequence of thirty 
evaluations, and the coefficient of variation of the response was found according to Eq. (29) where σ  is the standard 

deviation and X  the mean. The coefficient varies between zero and one. 
 

450,CV
X

CV

=

= σ
 (29) 

 
Table 3 lists values for the second proposal with reference to the best founded value of the objective function, and 

matrices Q and R show components as follows: 
 

12 12 12 8 8
1 2 3 4 5 6

8 8
7 8 1 2 3 4

8.9757 10 7.8936 10 9.3776 10 4.0346 10 10 10

10 10 0.0656 0.1638 0.3677 0.0587

α α α α α α

α α β β β β

= ⋅ = ⋅ = ⋅ = ⋅ = =

= = = = = =
  

 
Figure 2 to Figure 5 depict the dynamic behavior of the vehicle for the best value of the objective function of the 

proposal 2, where the suspension displacement is calculated according to Eq. (24). 
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Figure 2. Displacement of the eight degrees of freedom 

 

Figure 3. Suspension travel 

 
As provided in section 3 and according to Gillespie (1992), the maximum travel of the suspension for passenger cars 

is between m170,  and m200, , limits considered in this work, as verified in Figure 3. 
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Figure 4 and Figure 5 show the seat and body accelerations and the active control forces for the second proposal. 
 

 

 

Figure 4. Accelerations on body and seat 

 

 

Figure 5. Forces imposed on the system 

 
Despite the reduction in RMS of displacements and accelerations, forces imposed on the system, relative to the 

solution proposed by Shirahatt et al. (2008) and simulated in this study, increased 100% in the left front suspension, 
15% in the right front suspension, 130% in the rear right suspension and decreased 13% in the left rear suspension.  
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5. CONCLUSSIONS 
 

The choice of an objective function with information of acceleration of the body and the driver's seat was the best 
one which provided sufficient information about the dynamic behavior in displacements and accelerations. 

The proposed optimization about elements of matrices Q and R for one system with eight degrees of freedom and 
subject to one sinusoidal excitation showed significant gains when compared to results obtained by Shirahatt et. al. 
(2008). Most accelerations and displacements exhibited a reduction over 90%, despite of the involved forces increased 
over 100% relative to the reference. 

In future studies it will be evaluated the possibility of optimizing all elements of matrices Q and R, which could 
generate control signals with lower forces, but with a significant improvement of the vehicle vibration. It is also 
suggested the construction of an experimental prototype with the proposed LQR control. 
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