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Abstract. The elastic behavior of viscoplastic fluids is analyzed numerically, using a novel constitutive model. The equa-
tion predict not only elasticity but also the thixotropic behavior of viscoplastic fluids, and is based on the Oldroyd-B model
- but with variable viscosity, relaxation and retardation times. These parameters depend on the material microstructure,
which level is described by a structure parameter. The performance of the constitutive model is evaluated in the leaky cav-
ity problem, using the finite element technique, and a Galerkin least-squares-type model. Stress, velocity, and strain-rate
fields are obtained in order to clarify the role of elasticity and yield stress on the flow. Moreover, the results are compared
to previous ones, obtained with a simpler constitutive equation, in order to evaluate the capabilities and advantages of
the constitutive equation.
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1. INTRODUCTION

Elastic and viscous effects in the inertialess flow of elasto-viscoplastic fluids inside a lid-driven cavity are analyzed
in the present work. This class of materials can be present in several important industrial sectors – such as oil, food,
pharmaceutical, and cosmetics. The main characteristic of the viscoplastic fluids is that below the "yield stress" they are
highly structured materials with very high viscosities. When submmited to stresses above the yield limit their structure
breaks, a deep viscosity decay occurs and they behave as purely viscous fluids, with constant or shear thinning viscosity.
Due to the very low deformations that these fluids experience below yield stress, several works in the literature report
that these materials behave as solid materials at this range of stresses ((Barnes, 1999a), (Barnes, 1999b)). However, more
recently, with the development of more precise measurement techniques, it is observed that there may be some deformation
below the yield limit (e.g. (Carter and Warren, 1987), (de Souza Mendes et al., 2007), (Sikorski et al., 2009)). There are
also several experiments showing that elasticity can be present in this range of stresses ((de Souza Mendes et al., 2007),
(Sikorski et al., 2009)).

Viscoplastic fluids can present elasticity and thixotropy. Recently, an Oldroyd-B type constitutive equation was pro-
posed by (de Souza Mendes, 2009) to model the behavior of elasto-viscoplastic fluids, and also thixotropy. The equation
involves the determination of a structure parameter to describe the fluid microstructure, with the aid of an aditional equa-
tion that has to be solved together with the conservation and constitutive equations.

Many works in the literature present numerical studies of viscoplastic fluid flows with no elasticity or thixotropy
(e.g. (Alexandrou et al., 2001b); (Alexandrou et al., 2001a); (Alexandrou et al., 2001a); (Besses et al., 2003); (Burgos
and Alexandrou, 1999); (Burgos et al., 1999); (Mitsoulis et al., 2006); (Naccache and Barbosa, 2007); (Mitsoulis et al.,
1993); (Hammad et al., 2001); (Liu et al., 2002); (Zisis and Mitsoulis, 2002); and (Roquet and Saramito, 2003)). All these
works neglected inertia effects, and employed regularized equations proposed by (Papanastasiou, 1987), by (Bercovier
and Engelman, 1980) or by (de Souza Mendes and Dutra, 2004)) to model fluid viscosity. Regarding thixotropy and
elasticity, there are not so many works that consider this kind of behavior either because modeling is still a challenge, or
because of the lack of experimental data ((Barnes, 1997); (Mewis, 1979); (Mewis and Wagner, 2009), (de Souza Mendes
and Thompson, 2012a)). (Saramito, 2007) presented a new three-dimensional model for elasto-viscoplasticity based on
both Bingham and Oldroyd-B fluid models, obtaining good results in the study of simple flows. (Sofou et al., 2008)
obtained experimentally the rheology of bread dough, and used two equations to model the fluid, the Herschel-Bulkley
equation to describe the viscosity of the flour dough and the K-BKZ model with a yield stress, to represent the stress
relaxation and the viscoelastic nature of the material. (Nassar et al., 2011) employed an elasto-viscoplastic model to
simulate an expansion-contraction axisymmetric flow, comparing the results with experimental data from the literature.
Using the same equation, (Martins et al., 2013) solved the lid-driven cavity problem, with good qualitative results. (de
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Souza Mendes, 2009) improved the latter model using a microstructure parameter that gives the level of the structure
breakage of a viscoplastic material – function of the stress level applied to the material. In this equation, thixotropy is
also taken into account, and the relaxation time and viscosity are functions of the structure level of the material. Further
on, (de Souza Mendes, 2011) extended this model to an Oldroyd-B type model.

In this work, we solve the lid-driven cavity problem with the constitutive equation proposed by (de Souza Mendes,
2011), using a three-field Galerkin least-squares (GLS) finite element formulation. The formulation is able to successfully
capture the elastic and viscous effects present in the current model, even making use of an equal-order combination of
linear Lagrangian finite elementinterpolations. The role of elasticity, yield stress, shear-thinning and kinematics oin the
flow pattern are presented and discussed.

2. MECHANICAL MODELING

The mass and momentum conservation equations for steady creeping flow are given by:

∇ · u = 0 (1)
∇P −∇τ = 0 (2)

where u is velocity vector, P = p + ρφ is the modified pressure, p is the pressure, ρ is the fluid density, and g = −∇φ
is the gravitational force per unit mass. To model the elasto-viscoplastic behavior of the fluid, the extra-stress tensor
τ ≡ T + p1 is described by:

τ + θ1
O
τ = η

(
γ̇ + θ2

O
γ̇

)
(3)

where γ̇ ≡ ∇u +∇uT is the rate of deformation tensor field, and the upper-convected time derivatives of τ and γ̇ are
given by

O
τ ≡ dτ

dt
− τ · ∇u−∇uT · τ (4)

and
O
γ̇ ≡ dγ̇

dt
− γ̇ · ∇u−∇uT · γ̇ (5)

where d(∗)/dt ≡ ∂(∗)/∂t+ u · ∇(∗) is the material time derivative.
The rheological parameters appearing in the constitutive equation, namely the viscosity function η, and the relaxation

and retardation times θ1 and θ2, respectively, are functions of the structure parameter λ, which evolves with the time that
the fluid is being submitted to a certain stress. The time-dependent (thixotropic) behavior is expressed by an evolution
equation for the structure parameter, given by:

dλ

dt
≡ ∂λ

∂t
+ u · ∇(λ) =

1

teq

[
(1− λ)− (1− λeq)

(
λ

λeq

)]
(6)

where the RHS is composed of a (positive) buildup term and a (negative) breakdown term de Souza Mendes (2009). The
parameter teq is the equilibrium time, which physically means a time scale for the microstructure buildup process. It
can be easily observed that when teq → 0 the fluid structure instantaneoulsy develops to its equilibrium state and no
thixotropic behavior is observed. This situation result in a purely elasto-viscous behavior, and is the situation analyzed in
the present work. The relation between the equilibrium structure parameter, λeq , and the equilibrium viscosity ηeq (or the
steady state viscosity, obtained in the flow curve) is given by:

λeq(γ̇) =
ln ηeq(γ̇)− ln η∞

ln ηo − ln η∞
(7)

where ηo is the zero-shear-rate viscosity and γ̇ ≡
√

1

2
tr γ̇2 is the intensity of γ̇. The equilibrium structure parameter

λeq is a scalar quantity that varies within the range [0, 1]. It gives a measure of the structuring level of the microstructure:
λeq = 0 when the structuring level is minimum, and λeq = 1 when the material is fully structured. The equilibrium
structure parameter λeq can thus be seen as a normalized equilibrium viscosity function, since there is a one-to-one
relationship between structure and viscosity levels.

The relaxation and retardation times are defined as

θ1 =

(
1− η∞

ηeq

)
ηeq
Geq

(8)
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θ2 =

(
1− η∞

ηeq

)
η∞
Geq

(9)

where η∞ is the infinite-shear-rate viscosity, and Geq is the equilibrium elastic modulus ((de Souza Mendes and
Thompson, 2012b)):

Geq = Goe
m

(
1
λeq
−1

)
(10)

In this equation, Go is the structural elastic modulus of the fully structured material, and m is a positive scalar parameter
that dictates the sensitivity ofGeq with λeq . It can be observed that its lowest value (i.e., highest relaxation and retardations
times) occurs at the highest value of λ, and it increases as λ decays. This function is chosen to simulate the elastic behavior
of viscoplastic fluids at the regions of low stress values, i.e., where the stress is below the yield stress.

The equilibrium viscosity ((de Souza Mendes and Dutra, 2004)) is chosen to represent the viscoplastic behavior of the
fluid:

ηeq(γ̇) =

[
1− exp

(
−ηoγ̇
τy

)]{
τy
γ̇

+Kγ̇n−1
}

+ η∞ (11)

In this equation, τy is the yield stress, K the consistency index, and n the power-law index.
The fluid behavior is characterized by three different regions in the flow curve, namely the end of the highest viscosity

plateau γ̇o, the begining of the power law viscosity behavior γ̇1, and the begining of the lowest viscosity plateau γ̇2:

γ̇o =
τy
ηo

, γ̇1 =
(τy
K

)1/n
, γ̇2 =

(η∞
K

)1/n−1
(12)

where η0 is the low shear rate viscosity plateau, τy is the yield stress, K is the consistency index, n is the power-law
index, and η∞ is the high shear rate viscosity plateau.

2.1 Dimensionless parameters

The dimensionless parameters are obtained using the scaling procedure proposed by (de Souza Mendes, 2007):

t∗ = tγ̇1 ; x∗ =
x

R
; u∗ =

u

γ̇1R
; γ̇∗ =

γ̇

γ̇ 1

;

P ∗ =
P

τy
; τ ∗ =

τ

τy
; η∗eq =

ηeqγ̇1
τy

(13)

The governing dimensionless equations for non-thixotropic, steady creeping flows are given by:

∇∗ · u∗ = 0 in Ω∗ (14)
∇∗ · τ ∗ −∇∗P ∗ = 0 in Ω∗ (15)

τ ∗ + θ∗1(λ)τ̌ ∗ = 2η∗v(λ)

[
γ̇∗ + θ∗2

O
γ̇

]
in Ω∗ (16)

λ = λeq in Ω∗ (17)

where γ̇∗ = 1
2 (∇∗u∗ +∇∗u∗T

)
, and τ̌ ∗ = (∇∗τ ∗) · u∗ − (∇∗u∗) · τ ∗ − τ ∗ · (∇∗u∗)T . The dimensionless viscosity,

relaxation and retardation times are given by:

η∗eq(γ̇∗) = [1− exp(−(J + 1)γ̇∗)]

(
1

γ̇∗
+ γ̇∗(n−1)

)
+ η∗∞ (18)

θ∗1(γ̇∗) = α
η∗eq
G∗0

θ∗2(γ̇∗) = α
η∗∞
G∗0

(19)

where

α =
(1− η∗∞)

exp (m(1/λeq − 1))
(20)
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3. NUMERICAL MODELING

The numerical solution is obtained via the finite element method, using a four-field Galerkin least-squares (GLS)
formulation, in terms of the structure parameter, velocity, pressure and extra-stres. The GLS method produces stable
approximations for both elastic- and viscous- dominated flow regions, using simple combinations of finite element inter-
polations, and allowing the use of equal-order combinations of Lagrange finite elements ((?)).

The numerical formulation is described in details in (Fonseca et al., 2012). It employs the usual finite element sub-
spaces for incompressible multi-field problems: λ ∈ H1(Ω), τ ∈ C0(Ω)N×N ∩ H2(Ω)N×N , P ∈ C0(Ω) ∩ L0

2(Ω)
and u ∈ H1(Ω)N , and uses stability parameters to control the conservation, constitutive , and evolution equations. The
discretization of the GLS formulation results in a non-linear system of equations, which is solved using a quasi-Newton
method (see (?) for details).

Figure 1. The geometry and boundary conditions

The geometry analyzed is a quadratic cavity of length L, as depicted in Fig. 1. The tap wall is subjected to a horizontal
velocity uc from left to right, along with no-slip and impermeability conditions. Therefore, u = uc e1 at the tap wall, and
u = 0 on the remaining walls. All results are obtained using an equal-order of bi-linear (Q1) finite element interpolation.
A mesh independence procedure evaluating the relative error of the extra-stress magnitude is performed. Fig. 2 shows a
detailed view of the stress profile at x∗1 = 0.5. Despite results are almost coincident for the meshes investigated (errors
below 3%), the more refined mesh tested – with 100 Q1 finite elements and 10,201 nodal points.

Figure 2. Comparison of the stress module (τ =
√

1/2trτ 2) for three different meshes.
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4. RESULTS AND DISCUSSION

The results are obtained for steady flows, neglecting inertia and thixotropy. All the results are obtained for η∗∞ = 0.01.
The results show the effects of the rheological parameters and of the lid cavity velocity on the yield surfaces. The yield
surfaces are defined as the locus of points in which the magnitude of the strain rate is below the lowest shear rate value
for which the viscosity equals the higher viscosity plateau where η = η0, i.e., when γ̇ ≤ γ̇0 ( (dos Santos et al., 2011)).

(c)

(a) (b)

(d)

Figure 3. Yield surfaces: Effect of the jump number - high elasticity: G∗0 = 7, n = 0.5 and U∗ = 0.01, and (a)J = 500;
(b)J = 1000; (c)J = 5000; (d)J = 10000.

Figure 3 show the influence of the jump number J on the topology of yield surfaces, for U∗ = 0.01, n = 0.5, and
G∗0 = 7. The black regions represent the unyielded zones (γ̇ < γ̇0), while the white regions represent the yielded zones.
As fluid elasticity increases (higher relaxation time, G∗0 = 7, Fig. 3), It can be observed that there are two unyielded
zones, one symmetric, attached to the bottom wall and another one, non-symmetric, closer to the upper wall, located in
the core of a flow recirculating zone. The bottom unyielded region is mildly affected by the Jump number, but the upper
one strongly decreases as the Jump number increases. Elasticity is stronger inside the unyielded regions. Its effect is to
increase the stress levels and the deformation rates, which in turn reduces the size of the unyielded regions. It is worth
mentioning that the non symmetric flow pattern generated by elasticity was also observed in Nassar et al. (2007), in an
expansion/contraction flow.

The effect of the lid cavity velocity is shown in Fig. 4 for J = 500, n = 0.5, and G∗0 = 7. As expected, increasing the
lid velocity (which is equivalent to decrease the yield stress) leads to smaller (upper and bottom) unyielded regions due to
higher levels of velocities and consequently, higher deformation rates as well. Again, due to elasticity (recall that there is
no inertia), the flow pattern is non symmetric and the stress and strain levels are higher.

Figure 5 shows the effect of the power-law index. It can be observed that the flow pattern is almost insensitive to the
power-law index. Increasing n leads to an increase in viscous effects, which tends to cancel out the elastic effect and turn
the flow symmetric again.
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(c)

(a) (b)

(d)

Figure 4. Yield surfaces: Effect of lid velocity for n = 0.5, J = 500 and G∗0 = 7, and (a)U = 0.01; (b)U = 0.05;
(c)U = 0.1; and (d)U = 0.15.

5. FINAL REMARKS

Numerical simulations of inertialess flows of elasto-viscoplastic fluids have been undertaken in this article. The elasto-
viscoplastic model used is the one introduced by de Souza Mendes (2011). The mechanical model is approximated by
means of a four-field Galerkin least-squares method in extra-stress, pressure, velocity and the structure parameter. The
numerical results have evidenced the influence of elasticity, shear-thinning, and viscoplastic nature of the material on
the size and location of unyielded material regions. Elasticity showed to be crucial to better characterize the mechanical
response of some viscoplastic materials.
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