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Abstract. The investigation of rotating machinery faults occupies an outstanding position in rotor dynamic field. The 
most common fault in rotating system is the mass unbalance. Several identification methods were applied to identify the 
unbalance amplitude, phase angle and axial position. Robust optimization methods can be applied to avoid local 
minimum in the optimization process used in the unbalance parameter identification. Because of that, meta-heuristics 
search methods are interesting tools for solving this problem. This work proposes a comparison of the performance of 
the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO). The PSO is a population based stochastic 
optimization technique inspired by the social behavior of bird flocking or fish schooling. The potential solutions, called 
particles, “fly” through the problem space by following the current optimum particles, allowing the process to find the 
global optimum solution through this migration. On the other hand, the GA is based on an evolution process. In this case 
the potential solutions are represented by individuals that belong to a population (set of solutions). This population 
generates a new population through the evolution operators. The finite element method is used to model the rotating 
system, and the analysis is carried out in the frequency domain through the unbalance response. The journal bearings 
stiffness and damping coefficients were previously identified by a model updating process, and they are included in the 
system model. The experimental set up consists of a rotor, supported by two cylindrical journal bearings on a rigid 
foundation. The convergence of the processes is also analyzed, taking into account the mean and the standard deviation 
of the objective function, regarding the unbalanced mass identification convergence in both search methods. 
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1. INTRODUCTION  

 
The study of rotating machines is an important research topic in machines dynamics field, in view of the significant 

operational phenomena related to these machines. Mathematical models are developed to foresee the dynamic behavior 
of rotor-bearing systems, so that, faults that cause vibration in the system can be identified. One of the most common 
sources of vibration in rotating machines is the mass unbalance. Several model-based fault identification methods were 
developed to identify the mass unbalance parameters, considering the difference between experimental and model 
responses. Most of them use classical procedures based on gradient methods (see, Lees et al..2007; Pennacchi et al., 2007; 
Edwards et al., 2000). 

However, model-based identification methods produce non-smooth objective functions, which makes the gradient 
calculation extremely difficult (see, Marwala et al., 1998 and Marwala, 2010). Because of that, computational intelligence 
techniques, such as Genetic Algorithm, Simulated Annealing and Particle Swarm Optimization are interesting tools for 
avoiding this kind of problem. 

Previously, Castro et al. (2004) studied a non-linear rotor-bearing system, and the unknown parameters were the 
unbalance magnitude and the viscosity in each bearing. A single objective fitting process, based on Genetic Algorithm, 
was considered. Weighting factors were chosen for each one of the objective functions, showing how important each 
objective function is to the adjustment process. Thus, only a single solution was obtained for each set of weighting factors, 
which may be a local minimum. After that, a refinement of the results was achieved by using a hybrid procedure that 
combines two meta-heuristic approaches: the Genetic Algorithm and the Simulated Annealing, see Castro et al. 2005 and 
2007. A multi-objective Genetic Algorithm for solving this problem was also proposed. In that case, the problem of 
reaching a single solution for each weighting factor set is overcome, because a Pareto optimum set of solutions is obtained 
in general, see Castro et al., 2008. More recently, Genetic algorithm parameters were optimized to provide a better 
convergence in Castro et al. (2012). 

Other computational intelligence methods can also be used to find the unbalance parameters through a model-based 
identification procedure. Simulated Annealing was previously tested by Castro et al. (2005). Another promising method 
is the Particle Swarm Optimization, which was first proposed by Kennedy and Ebehart (1995). This method is based on 
social-psychological principles inspired by swarm intelligence.  

Therefore, this work proposes a comparison between Genetic Algorithm and Particle Swarm Optimization in the 
solution of the unbalance identification problem presented in Castro et al., 2012. Thus, the convergence of each method 
is analyzed based on the iteration needed to reach the global optimum and on the dispersion of the objective function 
throughout the process.      
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2. MATHEMATICAL MODEL 

 
A rotating system can be represented by a combination of substructures, which are the rotor, the journal bearings, and 

the support structure. In a more general case, the support structure can be considered as rigid. The rotor is supported by 
oil-film bearings that realize the coupling between the rotor train and the supporting structure. The oil-film bearing forces 
can be modeled by means of linearized forces, which take into account damping and stiffness coefficients for each rotating 
speed (see, Lund, 1987). Therefore, the expression of the linearized forces of the oil-film bearing is:  

 
  𝐅𝐁 = 𝐊𝐛 ∙ 𝐪 + 𝐂𝐛 ∙ �̇� (1) 

 
where the bearing stiffness and damping matrices are respectively: 
 

  𝐊𝐛 = [

⋱ ⋮ ⋮
⋯ 𝑘𝑦𝑦(𝜔) 𝑘𝑦𝑧(𝜔) ⋯

⋯ 𝑘𝑧𝑦(𝜔)

⋮
𝑘𝑧𝑧(𝜔)

⋮

⋯
⋱

] and 𝐂𝐛 = [

⋱ ⋮ ⋮
⋯ 𝑐𝑦𝑦(𝜔) 𝑐𝑦𝑧(𝜔) ⋯

⋯ 𝑐𝑧𝑦(𝜔)

⋮
𝑐𝑧𝑧(𝜔)

⋮

⋯
⋱

]. 

(2) 

 
 
The rotor-bearing system is schematically represented in Fig. 1. 
 

 

 
 

Figure 1. Rotor-bearing system 
 
According to Nelson (1976), the rotor can be modeled by finite element method. Equation (3) presents the equation 

of motion, which depends on the rotor-bearing system matrices M (mass), C (damping ) and K (stiffness), the excitation 
force f(t), and the bending degree of motion 𝐪(𝑡)T = {𝑦1, 𝑧1, 𝜙𝑦1

, 𝜙𝑧1
, … , 𝑦𝑛, 𝑧𝑛 , 𝜙𝑦𝑛

, 𝜙𝑧𝑛
}, where y is the horizontal 

radial displacement, z is the vertical radial displacement, 𝜙y is the angular displacement related to the y axis, and 𝜙z is the 
angular displacement related to the z axis. Torsional effects are neglected. 

 

  𝐌𝐪(𝑡)̈ + (𝐂 + 𝐂𝒃)𝐪(𝑡)̇ + (𝐊 + 𝐊𝒃)𝐪(𝑡) = 𝐟(𝑡). (3) 
 

The shaft damping matrix C contains two parts. The first part is proportional to the stiffness matrix K (multiplied by 
the constant 𝛽), and the second part has the gyroscopic effect (𝐂 = 𝛽𝐊 + 𝜔𝐆 ). The bearing stiffness and damping 
coefficients are included in the corresponding degrees of freedom.  

The excitation force is due to the mass unbalance m, with an eccentricity e and phase angle , as expressed in Eq. (4), 
considering a constant rotation speed ω. The axial position of the unbalance is determined by the finite element 
discretization node. The unbalance force is included in the degrees of freedom related to that node: 

 

𝐟(𝑡) = 𝑚 ∙ 𝑒 ∙ 𝜔2 {

⋮
cos(𝜔𝑡 − 𝜑)

sin(𝜔𝑡 − 𝜑)
⋮

} 

(4) 
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In the frequency domain, the system unbalance response Q can be represented by Eq. (5):  
 

𝑄 =
𝑚 ∙ 𝑒 ∙ 𝜔2 ∙ exp(𝑖 ∙ 𝜑)

−𝜔2𝐌 + 𝑖 ∙ 𝜔𝐂 + 𝐊
 

 (5) 

 
       
3. SEARCH METHODS 

 
 
3.1 Genetic Algorithm  

 
The Genetic Algorithm is a search methodology that apply random choice to guide a highly exploitative search, 

striking a balance between exploration of the feasible domain and exploitation of “good” solutions (Holland, 1971, 
Goldberg, 1989). This method is analogous to biological evolution. From a biological point of view, it is conjectured that 
an organism structure and its ability to survive in its environment (“fitness”), are determined by its DNA. An offspring, 
which is a combination of both parents DNA, inherits traits from both parents and other traits that the parents may not 
have, due to crossover. These traits may increase an offspring fitness, yielding a higher probability of surviving more 
frequently and passing the traits on to the next generation. Over time, the average fitness of the population improves. 

In GA terms, the DNA of a member of a population is represented as a string where each position in the string may 
take on a finite set of values. Normally, this “DNA” is represented by a binary string. It makes possible to work with 
integer and real numbers together in the same optimization process. Therefore, a decoding transforms this variable in 
binary numbers. However, it is possible to use different kind of codes, such as genes, that are represented by integer and 
real numbers.  

Members of a population are subjected to operators in order to create offspring. Commonly used operators include 
selection, crossover, and mutation. The selection operator compares the individuals of the population. The individuals 
that are closest to the optimum point have a major probability to produce a new offspring by crossover and mutation. 

The crossover operator combines the data of two different individuals. The mutation operator changes some bits of an 
individual. The following schema in Fig. 2 represents these two operators. 

 
 

 
 

Figure 2. Mutation and Crossover (Camargo et. al, 2010) 
 
GA’s are noted for robustness in searching complex spaces and are best suited for combinatorial problems. 
There are five GA parameters that influence the process time and the objective function convergence. As the GA is 

characterized to be a search algorithm, the increase of the operation time brings about better objective function 
convergence. The GA parameters are: 

• Total number of generations: this parameter is characterized to be the stop condition of the genetic algorithm. 
The increase of the total number of generations results in a linear increase of the computational process time;  
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• Population size: it is the number of individuals, who are represented by their chromosomes in each generation. 
The increase of this parameter increases the probability of objective function convergence. However, the process time 
increases very significantly; 

• Mutation probability: it is the probability of mutation occurrence. 
• Mutation rate: it is the rate of bits that can suffer mutation; 
• Crossover Probability: it is the probability of the crossover occurrence.  
If these parameters are not adjusted to the problem, the convergence cannot occur or it needs a long computational 

process time to occur. 
In order to keep the best results of each generation, the best individuals are kept in the next generation. This process 

is known  as elitist strategy and this rate is also a genetic algorithm parameter. 
The GA starts from the generation of a random population. This population is available and its individuals are selected 

to make the new generation, until the total number of generation is reached. To summarize this process, the steps of GA 
can be considered: 

 
1. Generate Initial population; 
2. Evaluate each individual; 
3. Select individual; 
4. Make crossover or mutation with selected individual, until the size of population is reached;  
5. If the stop criteria is reached (total number of generation), choose the best result and stop. Else, go to step 2. 

 
3.2 Particle Swarm Optimization 

 
The Particle Swarm Optimization (PSO) is an artificial intelligence technique that relies on social behavior pattern or 

social intelligence, which is observed in several bird species, fish schooling or ants’ colonies. It was propose by Kennedy 
and Ebehart in 1995 with the intention to simulate social behavior. The main idea is based on information systems that 
are typically constituted by a population of simple agents interacting locally to each other and with their environment. 
Local interactions between each agents lead to global behavior, although there is not a monitoring center that dictates 
how the agents should behave. Imagining a birds flocking, if a specific individual, or particle, of this group finds a more 
promising feed place, the rest of the group change their current course to this new feed place. In optimization process 
point of view, a bird (group individual) is a possible solution of the problem that flies over the field, which means the 
search area. 

Each optimized particle motion depends on three parameters: sociability factor, individuality (cognitive) factor and 
inertia weight. The algorithm combines these parameters with a randomly generated number to determine the next location 
of the particle. Besides, the number of particles and the termination criteria are also parameters of the methodology. 

The ith particle position in space is denotes by Xi = {Xi1, Xi2,…, Xim}, which is a solution candidate of an optimization 
problem with m variables. The best previous position (better objective function) of the ith particle is represented by Pi = 
{Pi1, Pi2,…, Pim}. The best global position, considering all particles, is Pg = {Pg1, Pg2,…, Pgm}. The new particle position 
variation is given by Vi = {Vi1, Vi2,…, Vim} and is calculated by: 

 
𝐕𝐢 = 𝑊 ∙ 𝐕𝐢𝐩𝐫𝐞𝐯𝐢𝐨𝐮𝐬

+ 𝑐1 ∙ 𝑟𝑎𝑛𝑑1 ∙ (𝐏𝐢 − 𝐗𝐢𝐩𝐫𝐞𝐯𝐢𝐨𝐮𝐬
) + 𝑐2 ∙ 𝑟𝑎𝑛𝑑2 ∙ (𝐏𝐠 − 𝐗𝐢𝐩𝐫𝐞𝐯𝐢𝐨𝐮𝐬

)  (6) 

 
Where W is the inertia weight, rand1 and rand2 are ramdom number between 0 and 1, c1 is the individuality or cognitive 

factor and c2 is the sociability factor. The new particle position is: 
 

𝐗𝐢 = 𝐗𝐢𝐩𝐫𝐞𝐯𝐢𝐨𝐮𝐬
+ 𝐕𝐢  (7) 

 
The termination criteria can be determined by the result convergence or even a maximum number of iterations. 
If the individuality or cognitive factor is set to zero, only the social behavior determine the search process. On the 

other hand, when the sociability factor is neglected only individual knowledge is important to define the particle way to 
best solution (feed place). 

The PSO steps are: 
 

1. Create initial particle swarm; 
2. Start iterations; 
3. Evaluate objective function to rank the position; 
4. Calculate position variation and new position using Eq. (6) and (7) respectively. 
5. If termination criteria is reached (total iteration), choose the best result and stop.  
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4. EXPERIMENTAL SETUP 

 
To develop and test the balancing strategy, the test-rig shown in Fig. 3 was used to acquire an experimental unbalance 

response of the rotor bearing system. This experimental test-rig has two hydrodynamic bearings with a radial clearance 
of 90 μm and one concentrated mass placed in the shaft middle. The bearing radius is 31 mm and its length is 20 mm and 
an AWS 32 oil lubricates the bearings. The distance between the bearings is 600 mm and the shaft diameter is 12 mm. 
The concentrated mass consists of a disk of external diameter of 95 mm, a length of 47 mm, and a mass of 2.3 kg. A 
journal with a diameter of 40 mm and length of 80 mm is set on the shaft in a position closer to the bearing opposite to 
the drive motor. Eventually, this journal can be used as a journal of a magnetic actuator. However, the actuator is not 
necessary in this work, because only unbalance response is considered. Nevertheless, its journal on the shaft must be 
considered in the finite element model of the rotor. In order to obtain the curves in the horizontal and vertical directions, 
two magnetic proximity sensors monitor the orbit of the rotor mass. To monitor the displacement of the shaft inside the 
bearings, two magnetic proximity sensors are used immerged in the oil film. 

 
  

 

Bearing 1 Bearing 2 
       Disk      Actuator 

 
 

Figure 3. Experimental Test-rig (Castro et al., 2012) 
 

5. METHODOLOGY APPLICATION AND RESULTS 

 
A model updating procedure was first applied to determine the bearing stiffness and damping coefficients. This 

process was presented by Castro et a. (2012). To summarize these results, Fig. 4 shows these coefficients for each rotation 
speed. Therefore, the complete rotor-bearing model presents a good accuracy to the experimental model. This is extremely 
important to perform a model-based identification process, as it is proposed in this work. 

The unbalance response (amplitude and phase) on bearing 1 is presented in Fig. 5, in order to exemplify how the 
model approaches the experimental results. The blue and red lines means horizontal y and vertical z flexural direction. 
The points are the experimental results. Because of possible damage to the test-rig, the unbalance response was not 
accomplished with rotation speed around the critical speed (22.5 Hz).  

A known unbalance was introduced to the central disc of the test-rig. In that way, it is possible to induce a vibration 
with a known excitation. The GA and PSO are applied to identify this unbalance, which is described by its magnitude 
(m∙e from Eqs. (4) and (5), phase  and axial  position, represented by a node of the finite element discretization). The 
objective function of both search (optimization) procedures is based on the difference of the experimental and model 
responses aand it is given by: 

 

𝑓 =  ∑ 𝑤𝑖 (√(𝑅𝑒(𝑞𝑒𝑖) − 𝑅𝑒(𝑞𝑠𝑖))
2

+ √(𝐼𝑚(𝑞𝑒𝑖) − 𝐼𝑚(𝑞𝑠𝑖))
2
)

𝑛𝑠

𝑖=1

 
 (8) 

 
where qe and qs are the experimental and simulated displacements respectively, ns is the number of sensors and w is 

a weighting factor to each  measured degree of freedom. The weighting factor can be used to evidence a higher confidence 
for a specific measured degree of freedom. Moreover, weighting factor could also be used  to fit the difference of 
magnitude. 
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Figure 4. Bearing coefficients (Castro et al., 2012) 
 

 

 
 

Figure 5. Bearing 1 Unbalance Response (Castro et al., 2012) 
 
 
The GA parameter where obtained by Castro et al. (2012), when it was optimized for this problem through factorial 

planning. These parameters are shown on Table 1. In order to compare the convergence of GA and PSO, the total iteration 
and the number of particles have the values of generations and population size respectively, because they have the same 
meaning for their own algorithm. The product of both parameters (generations and population size, or iterations and 
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number of particles) represents the number of evaluation of the objective functions. The first is the number of iterations 
and the second is the size of possible solutions used to sweep the optimization area. The others PSO parameters are also 
present on Table 1. They were selected to improve the method convergence. It is important to highlight that the number 
of generations or iterations is more than enough for the problem convergence. It is assumed higher values to guarantee 
the convergence, because both methods depend on random factors.  

 
 

Table 1. Search methods parameter. 
 

Genetic Algorithm Particle Swarm Optimization 

Generations = 100 Iterations = 100 
Population Size = 100 Number of Particles = 100 

Crossover Probability = 70% Inertia Weight = 0.3 
Mutation Probability = 10 % individuality or cognitive factor = 1  

 sociability factor = 1 
 
Table 2 shows the best adjusted values (for GA and PS) and the expected values of unbalance parameter that were 

inserted in the test-rig. The best objective function is also shown on this table. 
 
 

Table 2. Unbalance parameters. 
 
Unbalance parameters Expected value Best GA result Best PSO result 

Unbalance moment [kg·m] 1.425·10-4 1.419·10-4 1.419·10-4 

Unbalance phase [°] 0 5.3362 5.3368 
Unbalance position [node] 8 8 8 

Objective function - 0.06788 0.06788 
 
 
Both methods were able to reach the expected results. There is a shift on phase estimation (5°), but it is acceptable, 

because this phase discrepancy is lower than the difference between the holes used to fasten the unbalance to the 
experimental test-rig, which are positioned at an angle of 15° from each other. However, there are some differences on 
the method convergence as it is highlighted in Fig 6. Figure 6(a) presents the best objective function (minimum) for each 
iteration (or generations) for the PSO (blue solid line) and GA (blue dash-dot line). Besides, Figure 6(b) shows the detail 
of the first iterations (or generations). The PSO reaches the global minimum faster. For the tested case, the minimum 
objective function is obtained at the 10th iterations. In the case of the GA, the best objective function is reached at the 24th 
generation. Besides, the objective function standard deviation of PSO process approach to zero in the 11th iteration. This 
means that from the 11th iteration all particles reaches the first result. In the case of the GA, the objective function standard 
deviation never reaches zero. This is an important characteristic of the GA, because this characteristic allows the method 
to avoid convergence in any local optimum point, providing a mechanism to escape from this point and seek a global 
optimum point. 

The variance on GA convergence is higher than in PSO. The GA objective function mean is always higher than the 
minimum objective function value and there is considerable variations on its standard deviation. This is an important 
characteristic of GA, because this diversity allows the GA to search better results. The main parameter for this behavior 
is the mutation probability. If there is not mutation on GA process, the convergence tends to reach a local minimum with 
low or null diversity. On the other hand, the diversity of the PSO is low in the first interactions and null after the global 
minimum is located. Because of the process characteristic, the particle sweep all the search area and seek for the global 
optimum. Figure 7 (a) – (d) shows the particle positions over the iterations 1, 3, 10 and 20 respectively. On the first one, 
the position diversity is high, but a point close to the global minimum is found (highlighted in red). On the third iteration, 
it is clear that all particle is moving to the region were the global minimum is located. The diversity is low on the tenth 
iteration and all particle reached the global minimum at the twentieth iteration. This convergence process confirm the Fig. 
6 observation about the PSO process. The convergence is fast and there is a low (or null) objective function standard 
deviation after this convergence. 
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(a) 

 
(b) 

 
Figure 6. Identification convergence: (a) all iterations/generations; (b) firsts iterations/generations. 
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(b) 

 

2
4

6
8

10

x 10
-4

-2

0

2

5

10

15

Amplitude [Nm]

Best: me =0.00019107 phase =-1.7388 node =9   Iteraction =1

Phase [°]

P
o
s
it
io

n

2
4

6
8

10

x 10
-4

-2

0

2

5

10

15

Amplitude [Nm]

Best: me =0.00014152 phase =4.1849 node =8   Iteraction =3

Phase [°]

P
o
s
it
io

n

ISSN 2176-5480

187



H. F. Castro 
Comparison in the Application of Genetic Algorithm and Particle Swarm Optimization in Unbalance Identification in Rotating Machinery. 
 

 
(c) 

 

 
 

(d) 
 

Figure 7. Particle Swarm set in several iterations: (a) iteration 1; (b) iteration 3; (c) iteration (10); iteration (20). 
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6. CONCLUSIONS 

 
This paper deals with a comparison between GA and PSO applied to unbalance parameter identification. 
A rotor-bearing updated model was used, in order to ensure the accuracy between the test-rig experimental results. 

This fact highlighted the importance of representative model, because if the model does not fit the physical system, 
uncertainties are included in the parameters identified. 

To indicate the difference between the experimental and model responses, an objective function is accomplish, 
considering the experimental displacement in each sensor and  

Both method were able to find the expected parameters, excepted for a discrepancy in phase estimation, which is 
explained by the angle between the holes used to fasten the mass unbalance to the test-rig, which is equal to 15° that is 
higher from the difference between expected and reached values that is 5°. 

The PSO converges faster than genetic algorithm. On 10th iteration the PSO reaches the global minimum, while the 
GA got this value on the 24th generation. This PSO characteristic is an important aspect of the method, because a faster 
method is desirable if the application demands swift response. 

However, the variance on the objective function on the PSO tends to zero after the algorithm reaches the global 
minimum. In the case of the GA, the variance is always higher, which is an important characteristic of the method, because 
it helps the process to avoid local minimum. Although the PSO is faster than GA, the GA diversity can be an important 
advantage.  

This comparison should be extend to multiple fault identification process in a future work, in order to determine 
which method fits better taking into account a more complex problem, considering that both search methods presented 
different advantages.  
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