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Abstract. This paper presents the input-output linearization of a vehicle type MAGLEV (magnetic levitation transport), 
when the relative degree of the system is two, based in the simplified nonlinear model. By using standard Lie derivatives 
techniques it is possible to split the nonlinear dynamics in a linear external (input-output) part and in a nonlinear 
internal one not observable, allowing in this way considerations on the zero dynamics in the system. More specifically 
we find a class of diffeomorphisms in such a way the original system, can be placed in the normal form by using the 
outputs and their derivatives as part of a new set of states. This allows us to determine the internal and the zero 
dynamics for each diffeomorphism. Conditions for analysis of local asymptotic stability of the origin are presented and 
further it was exhibited one one-parameter family of implicit solutions for the dynamic zero.  
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1. INTRODUCTION  

 
Feedback linearization is an approach that allows transforming nonlinear system models into a (fully or partially) 

linear system through of a nonlinear feedback control law of the state or output previously chosen. This methodology 
has been used successfully to address some practical control problems such as tracking problems, control of helicopters, 
high performance aircraft, control robotic arms and manipulators, artillery and satellites, as well as being used in 
biomedical devices and chemical and pharmaceutical industry pharmaceutics (Alvarez-Gallegos, 1994; Barbanti, 2012; 
Chem, 1998, 2000, 1999; Isidori, 1995; Reis, 2012-a, 2012-b; Silva, 2003; Slotine, 1991; Ray, 2012; Yabuno 2004, 
1991, 2003, 1989). 

The main idea of feedback linearization is to find a coordinate transformation and a feedback control law such that 
the input-state of the input-output relationship of the closed-loop system, in the new coordinates, are linear. After the 
nonlinear system has been modified so that the system or part of it to behave as linear, it is possible to use linear control 
techniques. 

This paper presents the input-output linearization of a vehicle type MAGLEV (magnetic levitation transport), when 
the relative degree of the system is two, based in the simplified nonlinear model (Yabuno, 2004, 1989). 

The MAGLEV is a new technology for mass transportation, which employs the generation of magnetic fields to 
levitate, direct and propel high-speed trains, adding safety, low environmental impact and minimal maintenance costs. 
Hence the interests of study in countries like Brazil, Germany, Japan, China, United States, Australia, Thailand, etc... 
(www.rtri.or.jp/rd/maglev/html/english/maglev_frame_E.html - www.ferrovia.com.br/ligacao.htm). 

Based in a simplified nonlinear model (Yabuno, 2004, 1989) described in state space, with the output vector field 
scale, the nonlinear dynamics in a linear external (input-output) part and in a nonlinear internal one not observable. 
More specifically we find a class of diffeomorphisms in such a way the original system, can be placed in the normal 
form by using the outputs and their derivatives as part of a new set of states. This allows us to determine the internal 
and the zero dynamics for each diffeomorphism. Conditions for analysis of local asymptotic stability of the origin are 
presented and further it was exhibited one one-parameter family of implicit solutions for the dynamic zero.  
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The paper is organized as follows. The section 2 presents a simplified mathematical model of a MAGLEV system. 
Section 3 presents the input-output linearization of the MAGLEV and its internal dynamic. In the section 4 performs the 
analysis of local asymptotic stability and determines the zero dynamic and concluding remarks are given in Section 5.  
 
2.  THE SIMPLIFIED MODEL OF A MAGLEV SYSTEM 

 
We consider a simplified mechanical model and the derivation of governing equations done by Yabuno (2004) for 

the MAGLEV, as shown in Fig. 1. 
The origin O of an inertial Cartesian reference frame is set at the point of the pendulum on the levitated body in its 

equilibrium point state (the gap between the magnet on the base and the magnet on the body in this state is denoted by 
zst). The levitated body, whose mass is m1, is restrained to move freely only in the z-direction. The motion is expressed 
by the displacement of the pivot from O in the vertical direction and is denoted by zd. The base is sinusoidally excited in 
the vertical direction with a prescribed displacement, zb=zb1 cos Ωt, where zb1 and Ω are the amplitude and frequency of 
the base excitation, respectively. The natural frequency of the body is denoted by Ωz. The dimensionless variables t* and 
z* are defined as t* = t z and ,zzz std

*   respectively.  z  and  = zb1/zst are dimensionless parameters 
(Yabuno, 1989; Yabuno, 1991).  

 
                                                                                
 Z Main system 
 
  
 X zd Magnet 
 
 
 
 Zst + zd 
 

 
 zb = zb1cost  
 Base magnet 

 
Figure 1: The simplified model of a maglev system (Yabuno, 2004). 

 
The repulsive magnetic force between the magnet on the body and the magnet on the base, for finite but small 

variations of the gap between the magnets, can be well approximated by a polynomial function with quadratic and cubic 
terms (Yabuno, 1989; Yabuno, 1991). The (.) represents differentiation with respect the dimensionless time. 

The equation describing the system is the presented in Yabuno (2004) as follows: 
 

3*
zzz

2*
zz

**
zz

**
z

** zzvtcosz2vtcoszzz                                                                    (1) 
 
where *

z z express the linear viscous-type acting in the main system, zz and zzz are the coefficients of z2 and z3 
respectively, in the Taylor series expansion of the magnetic force (Yabuno, 1989, Yabuno, 2004). 

By rearranging the Eq. (1), then: 
 

.vtcos)z21(zzzz z **
zz

*
zzz

2*
zz

*
z

** 3
                                                             (2) 

 
Defining the state variables: 

 
*

1 z x   e *
3 tx  .                                                                                                                                                       (3) 

 
the Eq. (2) can be put in the following form: 
 

)x(fx  ,                                                                                                                                                                   (4) 
 
where f(x) a smooth vector fields in 3 defined by: 
 

0 
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)x(
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




















                                                                                                                                                                  (5) 

 
.vxcos)x21(xxxx )x( 31zz

3
1zzz

2
1zz2z1                                                                          (5-a) 

 
For the input-output linearization of MAGLEV, let be in Eq. (4) - (5-a): 

(a) 1x)x(hy   is the output; 
(b) u(t) is the input  of the system;                                                                                                                                  (6) 

(c)  g(x) a smooth vector fields in 3 defined by 






















0
)x(g , where  and  are nonzero real numbers. 

By using Eq. (5) and (6), the Eq. (4) - (6) can be put in the following form: 
 

1x)x(hy
u)x(g)x(fx



                                                                                                                                                           (7) 

 
where f and g are smoothing vector fields and h is a smoothing scalar function. 

The system given by Eq. (7) has relative degree 2 (Slotine, 1991; Isidore, 1995). In fact, repeated differentiation of 
the output, then: 

 
u)x(hLL)x(hL y fg

2
f  u)x(                                                                                                               (8) 

 

with )x(h)x(hLo
f   and )x(f)x(h1i

fL)x(h1i
fLfL 






  , i = 1, 2, ... are Lie derivative of the fields h and f . But 

 and  are nonzero, following the results. 
According to Slotine (1991) and Isidori (1995), the dynamics given by Eq. (7) is said to be input-output linearizable 

if there exists a region  in 3, a diffeomorphism 3:  and a nonlinear feedback control law ),x(uu  such 
that the new state variables z = (x) and the new input  satisfy a linear time-invariant relation.  

By means of input-output linearization, the dynamics of a nonlinear system by Eq. (7) is decomposed into an 
external (input-output) part and an internal unobservable part, a so-called normal form. To show that the nonlinear 
system by Eq. (7) can indeed be transformed into the norm form, we have to show not only that a coordinate 
transformation exists, but also that it is a true state transformation. In other words, we need to show that we can 
construct a  

Showing that the system given by Eq. (7) can be input-output linearized means to show that the nonlinear dynamics 
(7) can be decomposed into a linear outer part which relates input-output, and an internal unobservable one. This form 
is said normal form. For do this it is mandatory, then, to show not only that this form exists, but also that it is a true state 
transformation, that is, it is necessary to show that we could construct a local diffeomorphism  (x) allows this normal 
form verified (Slotine, 1991; Isidori, 1995). 

After to have decomposed the system in its normal way, the analysis of the internal dynamics of the original system 
can be made. From the knowledge of the internal dynamics and its equation, it is possible to analyze the dynamic zero 
and asymptotic stability issues. These are the goals of this work. 
 
3. THE LINEARIZATION INPUT-OUTPUT MAGLEV VEHICLE AND ITS DYNAMIC INTERNAL 

 
We wish to determine a diffeomorphism as in Slotine (1991) and Isidori (1995) such that the nonlinear system given 

by Eq. (7) can be placed in its normal form. From Eq. (5), (6) and (7), just define the set of states: 
 

1 = y = x1          and          2f2 xy)x(hL   .                                                                                                  (9) 
 
For the determination of (x), we must to be requiring (Slotine, 1991; Isidori, 1995): 

 
0g   or 0Lg  ,                                                                                                                                               (10) 
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that is, (x) to be a solution of the differential equation: 
 

0
x

)x(  
x

)x(  
32









 



 .                                                                                                                                             (11) 

 
With the sake in to be determining the solution of Eq. (11) we are searching for solutions of the type: 
 

)x(T)x(T)x(T (x)  133221                                                                                                                               (12) 
 
In such a way T1(x2), T2(x3) e T3(x1) are of the C1 and invertible. 
 
From Eq. (11) we get: 
 

0
dx

)x(dT)x(
dx
dT  

3

32
2

2

1   .                                                                                                                                  (13) 

 
Cause T1 = T1(x2) and T2 =T2(x3), from Eq. (13) we have: 
 

C
dx

)x(dT)x(
dx

)x(dT  
3

32
2

2

21    

 
and thus: 

221 xC)x(T  


  and 332 xC)x(T  


  

 
where C is the constant of integration. Then a general class of the PDE given by Eq. (13) solutions are: 
 

)x(TxCxC (x)  1332 


  .                                                                                                                                  (14) 

 
Note that Eq. (14) represents a one-parameter family of solutions of the PDE given by Eq. (13), since the integration 

constant C ranges from (-, +). Furthermore, T3 = T3(x1) can be varied as one wants. It may be linear or nonlinear. In 
Reis et al (2012) it was used the particular solution given by: 
 

32 xx (x)    . 
 
So, depending on Eq. (9) and (14) the mapping (x) has the expression: 
 

.)x(TxCxC      x        x (x)  133221 







 


                                                                                                                   (15) 

 
Note that the function (x) given by Eq. (15) is not singular for C and   0 since




C
 . Thus, (x) is a one-

parameter family of diffeomorphisms (Slotine, 1991; Isidori 1995), whose inverses are given by: 
 

  .)(TC (x)
C

,,x,x,x 13221321 















 





                                                                                                        (16) 

 
It is observed that when C = 0 we have )x(T (x)  13  . In this case, 0 and therefore  is not a diffeomorphism. It 
is not appropriated to the study of the proposed problem. Hence, from Eq. (16), the nonlinear dynamics given by Eq. (7) 
for each C  0, possess the normal form: 
 

 

 

1

13z

2

y

)(TwC,C

u
0

,
      











































                                                                                                                                 (17) 
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where   ,  is the one obtained from Eq.(5-a) and (15), which means: 
 

 





















)(TC 
C

vcos)21(                                       

 ,

1321zz

3
1zzz

2
1zz2z1











.                                                     (17-a) 

By facing Eq. (17) we can be doing the following observations:  
1. The non-linear dynamics in the system by Eq. (7) was decomposed into an external portion (input-output u, 1 and 

2) and into an inner unobservable ( ); 

2. The inner part is independent from the input u, and it depends only up the state . This part is called dynamic internal 
system by Eq. (7). 
The outer part given by Eq. (17) can be linearized. In fact, just take the control law (Slotine, 1991; Isidori, 1995): 

 

  


 ,1u .                                                                                                                                                    (18) 

 
The replacement of Eq. (18) in Eq. (17) gives: 

 

 

1

13z

2

y

)(TwC,C
   
  


































                                                                                                                                (19) 

 
where ),(  is the same as in Eq. (17-a). So, the system given by Eq. (7) is transformed into an exterior linear part 
over the input  and an inner part that is non-linear on the states 1, 2 and . 

 

4. THE LOCAL ASYMPTOTIC STABILITY ANALYSIS AND THE DETERMINATION OF THE ZERO 

DYNAMICS 

 
According Isidori (1995), the analysis of  the local asymptotic stability of a nonlinear system  can  be done with  the 

use of a  linear approximation system, near  a null critical point. This property can be observed in Proposition 2 in the 
Appendix. Another way for to do such analysis is by using the zero dynamics, which depends on the asymptotic 
stability. 

Both techniques are not based on the knowledge of the critical points in the nonlinear dynamics. In this sense, from 
Eq. (17) it follows that: 

 

 

  ).(T
C

w,

,1u

0

13z

2




















                                                                                                                                        (20) 

 
In this way, from Eq. (20) we obtain: 
 

  .)(T
C

w
)21(

1 )(T 
C

vcos 13z
3
1zzz

2
1zz1

1zz
13 




















 











                                           (21) 

 
From Eq. (21) we get: 
 




















 )(T

C
w

)21(
1cosar

v
C)(T 13z

3
1zzz

2
1zz1

1zz
13 









  .                                                 (22) 
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From Eq. (20) and (22) we have that the critical point P, in the nonlinear dynamics given by Eq. (17) has as 
coordinates: 

 
 ,  ,0  ,P 1                                                                                                                                                            (23) 

 
with  being  given as in Eq. (22). 
As the object of our interest is the point P = (0, 0, 0) by making 1 = 0 the critical point in Eq. (23) has the 

coordinates: 
 









 o3 cosar

v
C)0(T  ,0  ,0P 


                                                                                                                                (24) 

 
where 

 )0(T
C

w 3zo









   and  


,0,1u 1 .                                                                                              (24 - a) 

 
Making the translation for have P coincident with the origin in the new coordinate system, and because 1 = 2 = 0, 

if we define: 
 

o3
* cosar

v
C)0(T 


  ,                                                                                                                                    (25) 

 

for )0(T
C

w 3zo









  , we  obtain the new nonlinear dynamics whose critical point is the origin given by: 
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**

*
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u
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










































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                                                                                                                                (26) 

 
with 

 
 






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




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
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vcos)21(      
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132o3
*
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3
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2
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*














.                                         (26-a) 

 
To simplify the problem, it is assumed from now on that 0)(T 13  . This assumption, although reducing the 

classes of nonlinear dynamics treated, yet allows an analysis of the dynamics of large amplitude, which are given for 
each real C by: 

 

 
 

1
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*
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






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
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
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 
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.                                                                               (27-a) 

 
If we make in Eq. (27-a) 
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







 2o

* Ccosar
v
C 

C









  

 
for zo w




   and taking into account the Taylor series expansion around the origin of the function 

   2
* ,cosvcos    and making  ocosarsen   , then the nonlinear dynamics given by Eq. (27) can be rewritten as: 
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

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
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
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


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




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



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

                                                                  (28) 

 
and then the matrix A due to the linear approximation it is done as: 
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
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
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
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












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
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






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






































v      vC-    w21 C

C
v         v           w21 

0                       1                              0            

A

z
zzz

z
zzz .                                                                                                  (29) 

 
The eigenvalues of A are: 

 

 = 0      and   .
2

w21 4 zzz2
zz 
















                                                                                                (30) 

  

Taking the matrix 


















0

0
B  it is possible to show that the linear approximation is asymptotically stable, namely, the 

pair (A, B) is controllable if zzz w2





 

(see Proposition 1 in Appendix). In this case, we have rank (A, B) < 3, and in 

addition, .0z  

 
According the Proposition 2, every linear feedback which stabilizes asymptotically the linear approximation also 

stabilizes the original nonlinear system, at least locally. 
A question for future works will be to find the dynamic that stabilizes the linear approximation near the origin and in 

this way making   stable the nonlinear dynamics. 
The zero dynamics of this non-linear system is achieved when y (t) = 0 for all real t> 0, which means that 1(t) = 

2(t) = 0 t.Under these conditions the zero dynamics is given by: 
 

 

0y

wC,0C
z









                                                                                                                                                     (31) 

 

ISSN 2176-5480

3038



C. A. dos Reis, J. M. Balthazar and L. Barbanti 
Asymptotic Stabilization and Internal Dynamics of a Simplified Model of a Maglev System 
 

where: 
 

 






 



C

vcos,0 .                                                                                                                                        (31-a) 

 

But since y = x1(t) = 0, the manifold Mo is described as the locus of the points: 
 

 0x:xM 1
3

o   
 
which is a plane passing through the origin. In this manifold, the system dynamics given by Eq. (27) and (27-a) is 
governed by the dynamic zero of the Eq. (31). The critical point of the nonlinear dynamics done by Eq. (31) is different 
from zero and is given by: 

 

















zw
arccos

v
CP .                                                                                                                                               (32) 

 
By means of a translation of coordinates, the critical point in Eq. (32) will be taken at the origin of the new 

coordinates systems. In this case is denoted by  , as follows: 

 

   































o
*

z

o
*

z
*

cosar
C
vcosC wC-            

cosar
v
C

C
vcosC wC-    























                                                                                          (33) 

where  



 z

o
w

 .  

The zero dynamics given by Eq. (33) has a critical point at the origin. Note that this equation is not linear and for the 
determination of its general solution, just do: 
 

 i. zwC- A


 ; 

ii. 


CK  ; 

iii. 
C
vR 

 ;                                                                                                                                                             (34) 

iv. ocosarS  ; 

v. SRy *   . 
 
In this way by using Eq. (34) the Eq. (33) is done by 
 

.ycosKA
dt

d
*

*



                                                                                                                                                    (35) 

 
By using the Taylor approximation of order 2 about the origin in the cosine function the Eq. (35) can be written as: 
 

 2
*

*
y

2
KKA

dt
d




                                                                                                                                                   (36) 

 

where A, K and y are the same that the ones  in Eq. (34). From Eq. (34) - v, it follows that dy
R
1d *  . Therefore, the 

Eq. (36) can be written as: 
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,y
2
KKA

dt
dy

R
1 2

*
                                                                                                                                                (37) 

 
where A, K and R are the same that the ones in Eq. (34). The general solution of the Eq. (37) or Eq. (36) is: 

 

 

 

 
  1

** CRtSR
KA

KA
2
K

actg
KA

2
K

KA
2
K






























                                                                                                    (38) 

In an explicit way we can do 
 

 
  

R
SCRtKA

2
Ktg

KR

KA
2
K2

1
** 
















                                                                                                (39) 

 
and C1 is is the constant of integration. Therefore, Eq. (39) represents an one-parameter family of implicit solutions of 
Eq. (37). 
 
5. CONCLUSIONS 

 
This work concerns the dynamics of a MAGLEV (Magnetic Levitation transport) device, whose simplified model is 

obtained Yabuno (2004), (1989), where such nonlinear dynamics has relative degree 2. It is shown that the nonlinear 
dynamics can be decomposed, in a linear external part and in a nonlinear internal one. To this end, it presents a class of 
diffeomorphisms i(x) (equation (15)) such that the original system, for each i, may be placed in the normal manner 
from the use of departure and its derivatives as part of a new set of states, allowing the determination of internal 
dynamics and the dynamics of zero, for each diffeomorphism i(x). 

It was presented conditions for asymptotic stabilization of the linear approximation and proved that any linear 
feedback which asymptotically stabilizes the linear approximation is able to asymptotically stabilize the original 
nonlinear system, at least locally. 

A family of dynamic systems representing the zero dynamics was obtained and the one-parameter family of 
solutions of this dynamic was determined, for each i. 

For future work we also will be determine a feedback control that stabilizes the linear approximation, which also 
stabilize, at least locally, the original nonlinear dynamics. In addition, we intend to make the analysis of local 
asymptotic stability via the dynamic zero. If the zero dynamics of the system are asymptotically at 0, it is intended to 
determine a feedback control that stabilizes asymptotically and locally closed loop. 
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APPENDIX: 

 

Proposition 1: The linear approximation of the nonlinear dynamics given by Eq. (28) is asymptotically stable if 

.w2 zzz



  

 
Proof: To show that the linear approximation is asymptotically stable is equivalent to prove that the pair (A, B) is 
controllable. From Eq. (29) and (30), if  = 0, then we have that: 
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 The rank of (A, B) is equal to 3. Se   0, we get 
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In the Eq. (1), by making 











 zzz w21 a , 
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C
v-d  , we obtain: 
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So 
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By making  bA1   ,  abA2    and 




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Then,from the Eq.(3) we have the rank of (A, B) < 3 if and only if: 
 

1.  0 CdA-aAAA 2331 










                or 

2. 0C-A2  . 
 
From observing the condition 2, and because C  0, we have 0A2  . Now,  
 

0A2      0abA2    or   = 0  
b
a

  or .w2 zzz



                                                                     (4)

   

 

 

From Eq. (4)  and  
b
a

 we have  
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or b
b
a

z   . From the condition 1, we have 
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Proposition 2: (Slotine, 1991) Suppose that  the linear approximation is asymptotically stable, namely, the pair (A, B) is 
controllable, or if the pair (A, B) is not controllable then the modes of  non-controllability corresponds  to eigenvalues 
with  the real part non negative. Then, any linear feedback which stabilizes asymptotically the linear approximation also 
stabilizes the original nonlinear system, at least locally. If the pair (A, B) is not controllable and there is no 
controllability modes associated with eigenvalues with positive real part, the original non-linear system cannot be 
stabilized. 
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