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In addition, in the technical literature different theories have been proposed to model the metal transfer mechanism. 
Among them, it can be mentioned the static force balance theory (SFBT) (Lancaster, 1986; Norrish, 1988; Amson, 
1962; Amson, 1965; Waszink, et. al., 1983), the Pinch Instability theory (PIT) (Allum, 1985a; Allum, 1985b; Lowke, 
1997), the plasma force theory (PFT) (Needham, et. al., 1960), the critical velocity theory (CVT) (Waszink and Van 
den Heuvel, 1982) and the dynamic force balance theory (DFBT) (Choi, et. al., 2001; Jones, 1996; Jones, et. al., 1988a; 
Jones, et. al., 1988b; Watkins, et. al., 1992), beyond the combinations those as SFBT and PIT (Kim, 1989; Kim and 
Eagar, 1993; Waszink and Piena, 1986), with limitations to assume constants thermophysics properties (Nemchinsky, 
1998a; Nemchinsky, 1998b; Nemchinsky, 1998c). Recently, simulations have been conducted based on volume of fluid 
method (Vilarinho, 2002; Wang, et. al., 2003; Fan and Kovacevic, 1999; Hirt, 1981; Haidar, 1998a; Haidar, 1998b; 
Choi, et. al., 1999; Choi, et. al., 1998a; Choi, et. al., 1998b; Choi, et. al., 1998c; Fan and Kovacevic, 1998). 

It is also possible to identify models for GMAW process with more specific application or with distinct approach, 
for exemple, to the speed calculation (Lin, et. al., 2001) and the metal transfer momentum of unidimensional form 
(Simpson and Zhu, 1995; Kovacevic, 1996; Zhang, 2000; Scotti and Rodrigues, 2009), multiple electrodes (Tusek, 
1999), pulsed process (Vilarinho and Scotti, 2000; Richardson, et. al., 1994), equivalent resistive-inductive circuit 
(Bingui, et. al., 1998; Zhu, 1998; Saraev and Shipigunova, 1993; Reutzel, et. al., 1995; Sudnik, et. al., 2001), voltage 
drop (Quinn, et. al., 1994; Bingul, et. al., 2001; Quinn, 2002; Kim, 2001; Kim, 1991) and fume emission (Ioffe, et. al., 
1995; Haidar, 1999; Bosworth and Deam, 2000; Deam, et. al., 2000; Mendez, et. al., 2000; Redding, 2002; Dennis, et. 

al., 2001). 
Therefore, it can be stated that there are very sofisticated models available in the literature, but some of them 

demand large computational effort, which depend of correct set of physical properties dependent on temperature and 
actual boundary contitions imposed to solve the numeric simulation (Vilarinho, 2005). Thus, given these simplifications 
necessary to any model and starting from the assumption that a model more consolidated and practical are most 
interested for application to an industrial level, it is proposed to assess in this paper two models derived from Eq. (1) of 
Burn-off/original Melting Rate, called simplified model and expanded model. These models should be applied to the 
computation of the relationship between wire feed speed and current during GMAW process operating in conventional 
short-circuit for welding in mild steel groove joint in different shielding gases and positions in order to provide practical 
and usable results to industrial level. 

 
2. MODELS 

 

As discussed in the previous item, among the different existing models, this paper employs two models derived from 
Eq. (1), called simplified model and expanded model, described below. The main idea is to verify if the simplified 
model can assure appropriate estimation of the consumption relationship between wire feed speed and current, in 
comparison to a model more complete, which demands a more refined monitoring and calculation of electrical 
parameters. 
 

2.1. Simplified Model 

 
The first model shown in Eq (2) is extensively used and derived itself directly from Lesnewich’s model, considering 

the process at steady state and no longer instantaneously. 
 

2
RMSM ILIWFS    (2) 

 
where WFS is the wire feed speed, IM the mean current, L the energized length of electrode, IRMS the root mean square 

current and  and  the parameters to be experimentally determined. Table 1 brings  and  values found in technical 
literature for mild steel during welding in flat position. Other values for different materials can be found on Bálsamo 
(2000) and Vilarinho (2000) references. 

 
Table 1. Values for  and  determined by different autors for mild steel flat GMA welding. 

 
References Electrode Diameter [mm] L [mm] Shielding Gas  [ms-1A-1]  [s-1A-2] 

Richardson, et. al. 
(1994) 

0.8 15 Ar+5%CO2+1,5%O2 5.5E-04 35.0E-05 
1.0 15 Ar+5%CO2+1,5%O2 4.7E-04 9.10E-05 
1.2 15 Ar+5%CO2+1,5%O2 2.7E-04 5.9E-05 

Dutra (1989) 1.0 10 Ar+5%CO2 2.65E-04 5.00E-05 
Quintino and 
Allum (1984) 

1.0 15 Ar+5%CO2 3.70E-04 5.64E-05 
1.2 15 Ar+5%CO2 3.10E-04 6.71E-05 

Fujimura, et. al. 
(1987) 

0.9 
7.5 to 27.5 Ar+20%CO2 

5.3E-04 1.7E-05 
1.2 3.1E-04 4.8E-05 
1.6 1.9E-04 1.5E-05 
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2.2. Expanded Model 

 
As for the expanded model, it must consider the metal transfer influence. Thus, when considering the short-circuit 

transfer in GMAW process, two distinct periods/phases exist, namely open arc period/phase and short-circuit period/phase, 
as shown in Eq. (3). 
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where tA is the open arc mean time, tC the short-circuit mean time duration, IRMSA the RMS current in open arc 

phase, LC the energized length of electrode in short-circuit phase, IRMSC the RMS current in short-circuit phase and , A 
and C the parameters to be determined. 

During open arc, both heating due arc-electrode connection and Joule Effect exist. Therefore, the first parcel of Eq. (3) 
represents the open arc phase and it is weighted by his mean time (tA) relative to total mean time (tA+tC). On the other hand, 
the second parcel represents the heating during short-circuit, where the main heating is given by Joule Effect. Thus, only 
the parcel represented by C parameter exists and it is weighted by short-circuit mean time (tC) relative to mean time of 
both phases (tA+tC). 
 
3. METHODOLOGY 

 
The weldments were performed in a Motoman HP20 robot and a dedicated device developed to move the plate 

instead of the torch (which is conventionally fixed to robot’s shock-absorber), according to Fig. 1. This option was 
adopted due the need for positional welding and the availability of fixing system of torch, with the possibility of change 
its position. 

 

   
 

Figure 1. Experimental rig 
 

A a constant voltage chopper power source was used and the weldments were carried out in flat, vertical down-
downhill and overhead positions, varying the shielding gas between Ar+25%CO2 e pure CO2, which are the most 
common mixtures used to short-circuit GMAW. The gas output was set at 12 l/min. It was used AWS ER70S-6 wire 
electrode with 1.2 mm with travel angle of 90º and work angle of 0º. The base material is ABNT 1020, whose 
dimensions are shown in Fig. 2. The plate was milled simulating a V groove butt joint with no open root and face root 
of 2,35 mm, according to the same figure. 

Initially, preliminary tests carried out to maintain the volume of deposited material constant (relationship between 
wire feed speed and travel speed), as well as three current ranges with allowance of ± 5 A. For that it was varied the 
contact tip to work distance (CTWD). The wire feed speed was set in three levels – 2.25, 2.86 and 3.46 m/min (and 
proportionally the travel speed), which led to the current ranges between 100-110 A, 135-145 A and 160-170 A. Each 
condition was repeated at least twice to check the repeatability and better statistical estimation. 

 

Plate fixing 

system 

Test Plate 

Torch 

Wire Feeder 

Robot 

Data 

Aquisition 

ISSN 2176-5480

2959



D. B. Fernandes, L. O. Vilarinho and L. O. Vilarinho 
Burn-Off Rate Models for Conventional Short-Circuit Gmaw with Different Shielding Gases and Welding Positions 
 

 
 

Figure 2: Dimensions and test plate lead up (measures in mm) 
 
During the weldments, the necessary parameters for constants values estimation of Eq. (2) and Eq. (3) were 

monitored. It was used a data aquisition system (Machado, et. al., 2012) set at 5 kHz for each channel for current and 
voltage monitoring and a dedicated software (Vilarinho and Araújo, 2012) for calculating the mentioned parameters. It 
was also used a high-speed camera and pre-established arc length criteria (Maia, 2001) to estimate the energized length 
of electrode. In order to achieve such estimation, for Eq. (1) the energized electrode length was assumed equal to the arc 
length during open-arc phase and for Eq. (2) the energized electrode length during short-circuit (LC) was assumed equal 
to CTWD minus the reinforcement, measured after welding completion. 

 
4. RESULTS AND DISCUSSION 

 
From methodology proposed, preliminary tests was carried out to verify the current range possible to be obtained and 

from those was selected the parametric conditions of wire feed speed and CTWD. The employed values are shown for 
simplified model in Tab. 2 and Tab. 3 for Ar+25%CO2 and 100%CO2, respectively. For the expanded model, the 
measured values are shown at Tab. 4 and Tab. 5, respectively for the same shielding gases. It is emphasized that the 
current values in those tables appear with a decimal with the purpose of reduce the error spreading in measurement ( 
and  estimation), but the final value for current must be integer (with no decimal). 
 

Table 1. Results for Ar+25%CO2 in simplified model 
 

Position WFS [m/min] IM [A] IRMS [A] L [mm] 

Flat 

2.25 
107.8 121.9 9.50 
104.5 114.1 9.40 
104.3 113.0 9.11 
105.0 112.9 9.15 

2.86 
141.9 152.2 9.59 
136.0 143.7 9.92 
136.6 144.4 9.88 
134.6 144.4 9.95 

3.46 
170.3 190.9 9.65 
163.6 174.7 10.40 
160.8 168.6 10.64 
158.7 167.2 10.90 

Downhill 

2.25 105.5 121.7 8.35 
105.1 116.3 7.33 

2.86 
140.0 153.1 10.49 
136.5 146.3 11.33 
133.1 144.0 8.00 

3.46 
160.7 181.2 12.07 
162.1 173.2 12.07 
162.4 171.0 12.62 
157.7 169.2 12.62 

Overhead 

2.25 106.6 123.9 7.93 

2.86 
133.4 162.3 8.26 
132.6 143.8 8.25 
133.0 141.4 7.68 

3.46 
159.3 189.9 7.64 
159.5 187.6 6.83 
157.4 166.7 7.09 
159.7 169.8 6.24 
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Table 2. Results for 100% CO2 in simplified model 
 

Posição WFS 
[m/min] IM [A] IRMS [A] L [mm] 

Flat 

2.25 
110.6 130.6 8.54 
105.2 116.2 9.30 
102.6 116.2 7.73 
90.6 108.1 9.43 

2.86 
134.8 175.1 7.47 
143.8 161.6 8.95 
141.8 152.0 9.41 
137.1 149.0 9.52 

3.46 
152.9 191.5 9.91 
163.0 188.9 9.87 
153.4 174.4 10.36 
160.1 172.5 10.90 

Downhill 

2.25 
115.4 135.4 9.24 
108.8 130.4 9.05 
102.0 118.7 9.15 

2.86 
138.9 162.8 10.61 
140.0 160.7 11.37 
136.7 154.0 11.38 
133.3 150.0 11.21 

3.46 
154.9 189.5 10.99 
160.1 186.2 10.97 
164.1 182.2 11.94 
159.0 175.3 12.21 

Overhead 

2.25 107.7 133.2 8.48 
105.6 127.9 1.70 

2.86 
134.1 176.7 4.15 
133.0 175.7 2.23 
128.3 162.7 0.48 

3.46 
152.5 203.0 5.89 
162.6 211.8 2.36 
157.5 197.4 1.66 
157.9 184.6 0.37 

 
Table 3. Results for Ar+25%CO2 in expanded model 

 
Position WFS [m/min] tA [ms] tC [ms] LA [mm] LC [mm] IMA [A] IRMSA [A] IRMSC [A] 

Flat 

2.25 
12.15 3.49 9.50 10.30 124.7 117.6 137.8 
18.03 3.02 9.40 10.40 111.9 111.6 130.8 
37.16 2.94 9.11 10.31 111.7 110.2 146.5 

2.86 
8.50 4.00 9.59 10.39 146.1 150.3 157.0 
10.74 3.11 9.92 10.92 142.4 142.8 147.9 
16.12 2.83 9.88 11.08 143.3 142.7 156.0 
37.97 3.34 9.95 11.35 134.9 140.9 181.6 

3.46 
10.22 5.62 9.65 10.45 171.4 185.5 200.9 
10.05 3.65 10.40 11.40 168.1 172.0 182.7 
12.81 2.86 10.64 11.84 167.3 167.2 176.3 
21.71 2.86 10.90 12.30 164.7 164.7 187.0 

Downhill 

2.25 13.56 3.96 8.35 9.35 119.3 117.0 138.6 
19.32 3.18 7.33 8.53 115.7 113.4 135.2 

2.86 
9.75 4.31 10.49 11.49 146.8 150.5 160.1 
11.69 3.78 11.33 12.53 139.7 145.1 151.5 
17.51 3.30 8.00 9.40 139.7 141.6 158.7 

3.46 
10.53 5.32 12.07 13.07 163.1 179.3 185.4 
10.56 4.19 12.07 13.27 165.3 171.5 178.6 
12.36 3.59 12.62 14.02 164.8 170.6 173.8 
21.37 3.56 12.62 14.22 160.2 166.2 188.8 

Overhead 

2.25 14.24 3.77 7.93 9.13 126.7 118.1 145.8 

2.86 
17.23 6.67 8.26 9.46 129.3 149.0 193.9 
13.43 3.22 8.25 9.65 142.3 141.0 157.2 
20.55 2.75 7.68 9.28 141.0 139.4 158.7 

3.46 
19.27 6.44 7.64 8.84 155.1 175.3 229.1 
16.93 4.67 6.83 8.23 163.4 178.0 219.7 
15.85 2.70 7.09 8.69 168.1 164.3 182.6 
32.20 3.22 6.24 8.04 163.6 166.6 203.2 
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Table 4. Results for 100% CO2 in expanded model 
 

Posição WFS [m/min] tA [ms] tC [ms] LA [mm] LC [mm] IMA [A] IRMSA [A] IRMSA [A] 

Flat 

2.25 10.21 4.51 8.54 9.54 111.2 125.9 142.0 
2.25 10.72 2.77 9.30 10.50 109.3 115.1 121.6 
2.25 18.13 2.91 7.73 9.13 110.4 113.4 135.5 
2.86 21.02 9.77 7.47 8.47 111.4 154.1 215.8 
2.86 10.13 4.02 8.95 10.15 143.2 157.5 172.3 
2.86 10.35 2.57 9.41 10.81 148.9 151.0 157.4 
2.86 17.16 2.71 9.52 11.12 148.0 146.2 168.5 
3.46 15.64 7.67 9.91 10.91 141.8 179.3 215.6 
3.46 12.05 5.20 9.87 11.07 162.3 184.2 200.0 
3.46 12.76 3.62 10.36 11.76 158.3 170.2 189.7 
3.46 14.11 2.91 10.90 12.50 168.7 169.6 187.9 

Downhill 

2.25 10.46 4.95 9.24 10.44 114.8 131.8 144.1 
2.25 13.53 4.16 9.05 10.45 109.6 125.3 147.7 
2.25 19.15 3.31 9.15 10.75 108.6 114.6 142.7 
2.86 10.70 6.09 10.61 11.81 134.4 157.2 173.3 
2.86 11.45 5.03 11.37 12.77 135.8 156.9 170.6 
2.86 13.20 3.89 11.38 12.98 136.2 151.0 166.0 
2.86 17.35 3.51 11.21 13.01 133.6 146.6 168.8 
3.46 14.86 8.43 10.99 12.19 146.1 181.9 203.8 
3.46 12.45 5.95 10.97 12.37 154.3 180.9 198.4 
3.46 12.06 4.19 11.94 13.54 163.2 179.2 191.9 
3.46 16.50 3.83 12.21 14.01 158.2 171.7 192.2 

Overhead 

2.25 13.12 4.74 8.48 9.88 110.2 124.9 155.4 
2.25 15.60 3.55 1.70 3.30 111.8 122.6 151.0 
2.86 21.77 9.06 4.15 5.55 112.8 155.5 221.5 
2.86 24.67 7.45 2.23 3.83 119.4 157.4 227.9 
2.86 26.64 4.94 0.48 2.28 129.3 151.7 215.3 
3.46 25.10 11.15 5.89 7.29 128.4 175.0 257.6 
3.46 22.62 8.40 2.36 3.96 150.5 179.7 281.4 
3.46 24.06 5.90 1.66 3.46 152.8 173.9 274.0 
3.46 28.07 4.02 0.37 2.37 172.4 173.2 252.5 

 
A first analysis to be made concerns the relationship of proportionality existing between wire feed speed and 

current, according to Fig. 3 and with more inference to Fig. 4 and Fig. 5 to the mean and RMS values, respectively. As 
previously discussed, this relationship is already described in technical literature and approximated by Eq. (2). 

About the gas shielding influence in electrode consumption according to wire feed speed/current and welding 
position, it was noticed a little influence by Fig. 3. By performing an ANOVA, a little mean current influence was really 
noticed as shown in Fig. 4 with significant level p = 0.404, but for RMS current (Fig. 5) there is a higher statistical 
significance (p = 0.000). This low correlation with mean current is in accordance with previous work (Nascimento, et. 

al., 2012), which demonstrated low influence for different mixes and both direct and inverse polarity. However, it is 
possible to observe that the mean current is higher for Ar+25%CO2 blend, while RMS current is higher for 100% CO2 
case. Thus, by observing the melting rate equation, it leads to the conclusion that for the same wire feed speed, the 
blend is more correlated to heating effect during open arc time (Fig. 6); while 100% CO2 is more correlated to heating 
effect during short-circuit (Fig. 7). Thus, the parcel relative to  constant (heating by arc-electrode connection) is higher 
for Ar+25%CO2, while 100% CO2 induces higher  (heating by Joule Effect), as will be follow shown. 

About the results for current values shown at Fig. 3, the dispersion is higher for RMS current than the mean one, 
because the first term of burn-off rate ( term) is larger than the second term ( constant). Therefore, it is reasonable to 
assume that the mean current from first term have a more linear behavior and less dispersed than the ones observed for 
the RMS current, used in second term of the equation. 

About the welding position, there was a trend of longer metal transfer in overhead position, as pointed out by the 
greatest open arc (Fig. 6) and short circuit (Fig. 7) times. This is due to de fact of more difficulty to accomplish the 
metal transfer due to gravity, which reduces the short-circuit rate (Fig. 8). The same behavior was observed in Fig. 8 for 
100% CO2, which also presents the tendency of reducing the frequency of short-circuit. It is due to the increase of its 
time duration, but with insignificant open arc time reduction in comparison to Ar+25%CO2 blend. 

Now with respect to the wire feed speed influence in open arc and short-circuit time, it is not possible to 
demonstrate a tendency, as shown in Fig. 6 and Fig. 7. It would be expected a short-circuit rate increase by necessity to 
increase the quantity of metal transferred by travel speed increase, which would take to a reduction in the metal transfer 
time. In this case, it was kept this rate approximately constant (Fig. 8) considering the quantity of metal transferred 
(droplet volume) increased at each performed transfer. 
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Figure 1. Relationship between current, wire feed speed, shielding gas and welding position 

 

   
Figure 2. Influence of welding parameters on the mean curent 

 

   
Figure 3. Influence of welding parameters in RMS current 

 

   
Figure 4. Influence of welding parameters in open arc time 
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Figure 5. Influence of welding parameters in short-circuit time 

 

   
Figure 6. Influence of welding parameters in short-circuit rate 

 
By using non-linear regression based on models from Eq. (2) and (3), its parameters were calculated as shown in 

Tab. 6. These models shown values of R2 equals to 0.985 and 0.992 for simplified and expanded models, respectively. 
In addition the model’s statistical significance level (p) ranged between 0.029 and 0.016 for simplified and expanded 
ones, respectively. This demonstrates that both models represents adequately (reliability less than 0.05) the phenomenon 
investigated, with results slightly better (better fit and reliability) for expanded model. It is emphasized that these values 
are generally in accordance with those presented in Tab. 1. One point that draws attention is the presence of negative 
values for  constant. This reflects the fact that the model is a statistical regression (curve fitting), but also denotes the 
minor of the Joule Effect against arc-electrode connection heating. Vilarinho (2000) also mentions negative values for, 
although it is more commom for materials with low electrical resistivity like aluminum. 

 
Table 5. Burn-off rate constants obtained by both models 

 
Shielding 

Gas Position Simplified Model Expanded Model 
 [ms-1A-1]  [s-1A-2]  [s-1A-2] A [s-1A-2] A [s-1A-2] 

Ar+25%CO2 
Flat 3.59E-04 -4.50E-06 3.37E-04 1.14E-05 1.29E-04 

Downhill 3.48E-04 3.75E-06 3.56E-04 -5.18E-08 1.28E-04 
Overhead 3.58E-04 1.66E-06 2.46E-04 1.15E-04 8.22E-05 

100%CO2 
Flat 3.17E-04 2.15E-05 3.85E-04 -3.99E-05 1.81E-04 

Downhill 3.20E-04 1.62E-05 3.79E-04 -1.96E-05 1.44E-04 
Overhead 3.61E-04 1.72E-06 3.90E-04 -9.44E-05 2.49E-04 

 
From  and  coefficients shown at Tab. 6, it is possible to state higher values of  are achieved for Ar+25%CO2 

shielding gas, whereas the  constant is higher for 100%CO2, as discussed earlier according to higher heating of arc-
electrode connection (for mix shielding gas) or by Joule Effect (pure CO2). 

For the welding position, it was not possible to identify characteristic tendency, since there are correlations between 
current, open arc time and short-circuit time (and both last in metal transfer rate). As previously discussed, the welding 
position had stronger effect in these parameters than burn-off rate constants. 

Finnally, the applicability of both models must be discussed in terms of lower error in to estimate correctly the wire 
feed speed to a given required current, since the power source was operating in constant-voltage mode and the current is 
a consequence of the set of the wire feed speed. Therefore, an analisys based on obtained residuals was done for both 
models. Tables 7 and 8 bring the obtained residuals for each welding conditions according to models, welding positions 
and shielding gases. By performing an ANOVA in those residuals it is possible to check the dispersion level found (Fig. 
9) and welding position and shielding gases influences used for both models (Fig. 10 and Fig. 11). 

From these results, it is possible to assert that expanded model shown consistently lower results than simplified one 
for residual levels. Although the significance level (p = 0.518, as shown in Fig. 9) did not indicated directly the 
estimation advantage and consequent reduction of residual by expanded model, the obtained values with this models are 
in fact lower. Special attention must be given to overhead position, where the estimation tendendy is reversed, in other 
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words, the simplified model got slicely lower residual level than expanded one, as shown in Fig. 10. However, this 
difference is smoother than the one observed to other positions, as seen in the same figure. Thus, in general, the 
expanded model enabled the correct wire feed speed estimation with lower residual levels, with great fitting (R2 = 
0.992) with righ statistical significance (p = 0.016). 

 
Table 6. Residual level comparison between models for Ar+25%CO2 shielding gas. 

 
Position WFS [m/min] Resídual [m/min] 

Fit Simplified Model Expanded Model Simplified Model Expanded Model 

Flat 

2.25 2.28 2.36 -0.03 -0.11 
2.25 2.22 2.20 0.03 0.05 
2.25 2.21 2.29 0.04 -0.04 
2.25 2.23 2.74 0.02 0.12 
2.86 3.00 2.75 -0.14 0.11 
2.86 2.87 2.89 -0.01 -0.03 
2.86 2.89 2.86 -0.03 0.00 
3.46 3.57 3.54 -0.11 -0.08 
3.46 3.44 3.43 0.02 0.03 
3.46 3.38 3.45 0.08 0.01 
3.46 3.34 3.50 0.12 -0.04 

Quadratic average of residuals 0.24 0.23 

Downhill 

2.25 2.23 2.29 0.02 -0.04 
2.25 2.22 2.29 0.03 -0.04 
2.86 2.98 2.87 -0.12 -0.01 
2.86 2.91 2.80 -0.05 0.06 
2.86 2.82 2.80 0.04 0.06 
3.46 3.45 3.47 0.01 -0.01 
3.46 3.47 3.45 -0.01 0.01 
3.46 3.48 3.46 -0.02 0.00 
3.46 3.38 3.49 0.08 -0.03 

Quadratic average of residuals 0.17 0.11 

Overhead 

2.25 2.30 2.28 -0.05 -0.03 
2.86 2.89 2.78 -0.03 0.07 
2.86 2.87 2.84 -0.01 0.03 
2.86 2.87 2.88 -0.01 -0.02 
3.46 3.45 3.51 0.01 -0.04 
3.46 3.45 3.49 0.01 -0.02 
3.46 3.40 3.46 0.06 0.00 
3.46 3.45 3.43 0.01 0.03 

Quadratic average of residuals 0,09 0,10 
 

 
 

Figure 7. Residual levels obtained from both models with statistical significance p = 0.518 
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Table 7. Residual level comparison between models for 100% CO2 shielding gas. 
 

Position WFS [m/min] Resídual [m/min] 
Fit Simplified Model Expanded Model Simplified Model Expanded Model 

Flat 

2.25 2.29 2.20 -0.04 0.05 
2.25 2.16 2.12 0.09 0.13 
2.25 2.08 2.25 0.17 0.00 
2.86 2.86 2.83 0.00 0.03 
2.86 3.03 2.92 -0.17 -0.06 
2.86 2.97 2.93 -0.11 -0.07 
2.86 2.88 3.00 -0.02 -0.14 
3.46 3.37 3.50 0.09 -0.04 
3.46 3.55 3.51 -0.09 -0.05 
3.46 3.32 3.31 0.14 0.15 
3.46 3.46 3.43 0.00 0.03 

Quadratic Average of Residuals 0.34 0.28 

Downhill 

2.25 2.38 2.25 -0.13 0.00 
2.25 2.23 2.24 0.02 0.01 
2.25 2.08 2.27 0.17 -0.02 
2.86 2.94 2.86 -0.08 0.00 
2.86 2.97 2.90 -0.11 -0.04 
2.86 2.88 2.86 -0.02 0.00 
2.86 2.80 2.83 0.06 0.03 
3.46 3.35 3.43 0.11 0.03 
3.46 3.44 3.45 0.02 0.01 
3.46 3.53 3.53 -0.07 -0.07 
3.46 3.41 3.42 0.05 0.04 

Quadratic Average of Residuals 0.29 0.10 

Overhead 

2.25 2.35 2.33 -0.10 -0.08 
2.25 2.29 2.22 -0.04 0.03 
2.86 2.92 2.66 -0.06 0.20 
2.86 2.89 2.59 -0.03 0.27 
2.86 2.78 2.73 0.08 0.13 
3.46 3.33 3.60 0.13 -0.14 
3.46 3.54 3.50 -0.08 -0.04 
3.46 3.42 3.40 0.04 0.06 
3.46 3.43 3.74 0.03 -0.28 

Quadratic Average of Residuals 0.37 0.41 
 

 
 

Figure 8. Influence of shielding gas in order to welding position in residual level for both models 
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Figure 9. Influence of welding position in order to shielding gas in residual level for both models 
 

5. CONCLUSIONS 
 
From obtained and discussed results in experimental consitions presented, it is possible to conclude that: 
 The expanded model enabled better experimental fitting (R2 = 0.992) with lower residual and higher statistical 

significance (p = 0.016), and therefore it must be used in GMAW process with short-circuit transfer; 
 Higher values of  constant are achieved for Ar+25%CO2 blend, although the  constant is higher for pure CO2. 

Despite to welding position, it is not possible identify characteristic trend. Thus, the blend is more correlated to 
heating during arc open time, whereas pure CO2 is more correleated to heating by short-circuit; 

 The results dispersion was higher for RMS current than mean. Thus, is reasonable to assume that mean current 
present in first term of burn-rate has a more straight behavior and less scattered than RMS current, used in 
second term of the same equation; 

 About the welding position, there was a trend to lower metal transfer rate in overhead position, with higher both 
open arc and short-circuit times; 

 The pure CO2 also shown trend in reduce the short-circuit rate by meaningful increase of short-circuit duration 
time, but with negligible open arc time reduction in comparison to the Ar+25%CO2 blend. 
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