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Abstract. In this work a parameters fitting methodology is applied to laminated composite plates used in aeroelastic
wing models. Experimental modal analysis results are used as reference values for correlation maximization, compared
to numerical values obtained from finite element simulation. An optimization process is used, where the objective func-
tion includes information on the experimental and numerical natural frequencies. Numerical studies with different FEM
discretization models of an isotropic cantilever beam are adjusted. Fitting methodology is extended to orthotropic models
where shear modulus and the spanwise and chordwise elasticity moduli of laminated composite plates are fitted. The
modal assurance criterion is used to verify that the mode shapes are correctly correlated. A code in Matlab TM is devel-
oped, using MSC Nastran TM as the finite element solver for numerical modal analyses. The methodology is successfully
applied to the parameters fitting of unidirectional carbon fiber plates, supporting complete aeroelastic tests.
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1. INTRODUCTION

In this work, structural parameter fitting techniques applied to orthotropic plates used in aeroelastic tests are studied.
The goal is to find by successive iterations the structural parameters of finite element method (FEM) model that corre-
sponds to the physical model. The mean idea consists in applying a cost function based on residue between the numerical
and experimental eigenvalues and eigenvectors.

This methodology is useful for dealing with aeroelastic dynamic systems where FEM is used as a numeric tool to
represent the system dynamics. Since the numeric model differs from physical, the fitting methodology is employed to
obtain adequate parameters, based on results from experimental modal analysis (EMA) or operational modal analyses
(OMA) are used to obtain natural modes frequencies and shapes of the physical model.

The mathematical background of the present work is similar to that employed by Infantes (2000) and Göge (2003).
The parameters updating results of an least squares minimization of the residue between reference (experimental) and
adjusting (numerical) data. Modal assurance criterion (MAC) is applied to verify the correlation between actual and
numerical modes (Allemang, 2003).

To automate the fitting process, the computational tools MSC Nastran TM and Matlab TM are coupled to solve the
modal problem and to implement iterative correction. The ability of fitting orthotropic numerical models is an advantage
in view of several applications on aeronautical and aerospace field as well as wind turbines, where low weight and
excellent mechanical properties are essential to increase performance.

To validate the methodology, an isotropic aluminum cantilever beam is studied, as in Infantes (2000) . The elasticity
modulus and equivalent translational and torsional springs at root are fitted. Models with different number of points are
used to verify the interpolation process. To achieve the goals of dealing with composite plates, the methodology is also
applied to a flat plate made of orthotropic material, where shear modulus and the spanwise and chordwise elasticity moduli
are fitted. To complement the work, a composite flat plate used in aeroelastic tests performed by de Souza et al. (2013)
is analyzed. In that work, EMA and OMA methodologies were used to characterize the modal behavior of composite flat
plates made of carbon fiber and epoxy for aeroelastic analyses purposes.

2. PARAMETERS FITTING METHODOLOGY

The process of parameters fitting methodology is to update the structural parameters, θ, of a numerical model until
they correspond as close as physical model. Manual corrections are slower than a automated method. The high time
exposure of the manual correction is a major drawback compared with computational iterative methods (Göge, 2003).
Another problem in manual correction is when the model has more than one structural parameter to be predicted since the
global dynamic behavior is affected by each parameter. Even though, the parameters fitting methodology allow multiple
parameters fit in much less time. Following Infantes (2000), the mathematical method used is the least squares in order to
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minimize the cost function, which is defined as:

J(∂θ) =
1

2
εT ε, (1)

where the term ε is a residue between numerical and experimental data, given by:

ε = ∂zm − ∂z, (2)

Here, ∂zm is a vector that contains the experimental data, arranged in the follow way:

zm =
{
λ1 λ2 . . . λp φT1 φT2 . . . φTp

}T
. (3)

The term z is a vector that contains the analytical data depending on the model parameters (Göge, 2003). The analytical
vector is nonlinear, and a truncated Taylor series is used for linearization:

z(θ1, θ2, θ3θn) = z(θ̄1, θ̄2, θ̄3, ..., θ̄n) +
n∑

i=1

∂z

∂θi
(θi − θ̄i), (4)

or, in a short representation,

∂z =

[
∂z

∂θ

]
∂θ −→ ∂z = Sj∂θ. (5)

The terms in the above equation are: ∂θ = θ − θj represents the parameter variation, and Sj is the sensitivity matrix.
Inserting the residue, Eq. (2), in the cost function, Eq. (1), it is obtained:

J(∂θ) = ∂zT∂z− 2∂θTSTj ∂z + ∂θTST
jSj∂θ, (6)

and applying the least square method on the above equation means to minimize J in relation to ∂θ,

∇J(∂θ) = −STj ∂z + STj Sj∂θ = 0, (7)

solving Eq. (7) to ∂θ,

∂θ =
[
STj Sj

]−1
STj ∂z. (8)

By this formulation, the fitted parameters can be obtained by,

θj+1 = θj + [STj Sj ]
−1STj (zm − zj). (9)

The formulation for parameters fitting presented above does not consider weighting, hence all measured data is equally
pondered (Infantes, 2000). In order to evaluate Eq. (9) the sensitivity matrix must be defined.

2.1 Sensitivities

Design sensitivity analysis (DSA) is a design tool for estimating effects of many interrelated design variables such as
element properties and materials on the structural response (Lahey, 1983). The DSA is used to compute the values of the
design sensitivity coefficients witch are defined as the gradients of the design variables at the current design point, and
the computation of these parameters are the major task of sensitivity development. Hence, structural sensitivity consists
in changing the design variables in search for a better solution during the parameters fitting process (Jurado et al., 2012).
Sensitivity matrix contain eigenvalues, λ, and eigenvectors, ψ derivatives, and the size of S matrix vary with the number
of structural parameters n and the number of natural modes, m. The sensitivity matrix is contains the partial derivatives
of the eingenvectors and

S =




∂λ

∂θ1

∂λ

∂θ2
· · · ∂λm

∂θn

∂ψ

∂θ1

∂ψ

∂θ2
· · · ∂ψm

∂θn


 . (10)

Infantes (2000) used an analytical formulation to obtain sensitivities. In the present work, however, it was decided to
use finite differences. Since MSC Nastran TM is used to calculate the modes, there was no information on the mass and
stiffness matrices. Because the models are small enough, the calculation of modes at each design point is not expensive,
and can be afforded.
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2.2 Model correlation

Working with parameter fitting methodology, data of experimental and numerical models have to be correlated. When
the number of modes in a EMA are large, is not easy to correlate each one in FEM model by manual process. For this
reason, the modal assurance criterion (MAC) is used to provide a measure of consistency, or in other words a degree of
linearity, between estimates of a modal vector. This provides an additional confidence factor in the evaluation of a modal
vector from different excitation locations or different modal parameter estimation algorithms.

Modal assurance criterion is defined as a scalar constant relating the degree of consistency between one modal and
another reference modal vector (Allemang, 2003). MAC is defined as,

MACij =
|ψTmiψaj |2

(ψTmiψmi)(ψ
T
ajψaj)

. (11)

Good correlations between numerical and experimental models occur when the matrix mean diagonal is nearly 1.
Terms nearly 0 represent non correlated modal shapes (Infantes, 2000). When terms out of the matrix mean diagonal are
close 1 modal shapes between models have problems such as exchange or coupled modal shapes. Definitely MAC is a
suitable way to check correlations, and is usually represented by a matrix or colored charts.

Here, it is necessary to have the modes represented in the same model, because vector need to be adequately sized. In-
terpolation of mode shapes is common process in aeroelastic analysis. In the present work, interpolation by use of splines
in implemented to bring the reference mode shapes to the fitting model. The reader is referred to ZONA Technology
(2007) for more details on the method.

3. CODE IMPLEMENTATION

The methodology described above is implemented in Matlab TM, and uses MSC Nastran TM as the structural solver.
The flowchart, given in Fig. 1 follows the one presented by Infantes (2000) and Carneiro (1993), but here the sensitivity
is calculated in a much simpler way, as described in section 2.1.

START

Input and
preprocessing1

j = 0,
Initialize analysis2

(interpolation of
mode shapes)

Finite element model
(NASTRAN) -

numerical results
3

MAC4

Difference be-
tween fitting and
reference values

5

Converged
?6

Write output
files (report)

END

Sensitivity7

Update parameters9

yes

no

∆λ = λF j − λR
∆φ = φF j − φR

S =




∂λ
∂θ
. . .
∂φ
∂θ




Figure 1: Parameters fitting method: algorithm flowchart.

In Fig. 1, steps 1 to 3 compute the solution of numerical FEM model with MSC Nastran TM solver. MAC in Step 4
is described in Sec. 2.2. At step 5 differences between numerical and actual eigenvalues and eigenvectors are calculated,
these differences are used in step 6 where the convergence criterion is defined. If the modulus of ∆λ and ∆φ are lower
than an acceptable error, ε, fitting process is employed and the output files are written. However, if differences are bigger
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than the error, fitting methodology is applied in blocks 7 to 9. Block 7 represents the sensitive matrix presented in Sec.
2.1, at block 8 the minimization process is calculated by Eq. 7 and at block 9 the adjusted parameters are obtained by Eq.
9. When differences become less than acceptable error the convergence is achieved.

4. NUMERICAL STUDIES

4.1 Isotropic beam

Following the study cases presented by Infantes (2000) where isotropic beams were analyzed, a similar configuration
is studied here. The design variables θi are: θ1 is the beam elasticity module, (E), θ2 is the translational spring at the root
(Kt), and θ3 is the torsional spring at the root (Kr).

To begin the study, generic values were defined. For the chosen case, the density is not given by the cited reference
(Infantes, 2000). Thus, a model close to that is defined, using a density that brings the frequencies close to the ones
presented. It is interesting to note that the methodology can not be applied here because the mode shapes are not available.

In the present analysis, a coarser mesh model is used as reference and a finer mesh model is used as fitting model.
This would be the condition where uncertainties related to experimental conditions are represented by the coarse mesh.
To mention one of those experimental conditions, the number of available accelerometers or vibrometers is usually small,
what leads to differences in the modal results. On the other hand, the numerical model can be further and further refined,
until all desired modes are very well represented.

0.7

0.05

0.025

Kt

Kr

Figure 2: Isotropic beam model and dimensions.

Table 1: Design variables used in the reference model.
θi Ref. values

1 E 61.0e9 Pa
2 Ktx 50.0e6 N/m
3 Kr 100.0e3 N/m

ρ 2100.0 kg/m3

Ref. frequencies (Hz)
1 f1 39.69
2 f2 244.83
3 f3 668.04
4 f4 1262.22
5 f5 1988.88

39.69Hz

244.83Hz

668.04Hz

1262.22Hz

1988.88Hz

Figure 3: First 5 modes for the isotropic
beam, modeled with 7 elements (8 nodes).

4.1.1 Reference and fitting models with 8 nodes

To verify the condition related to mode shapes interpolation, the same FE model is used both as input for the fitting
model and as reference model. This situation does not require interpolation of modal displacements. Results are very
good, both in frequencies and in mode shapes, as seen in Tab. 2 and Fig. 4.

Table 2: Fitted properties and frequencies for the isotropic beam model (nmodes = 3, cconv = 1e-5.)
name Reference ∆θi θ0(initial) θconv (final)

1 E 61.e9 0.01 30.0e9 61.00e9
2 Kx 50e6 0.05 10.0e6 49.99e6
3 Kα 100e3 0.05 10.0e3 99.99e3

Ref. freq.(Hz) fitted freq. (Hz) Error (%)
f1 39.69 39.6922 0.0055
f2 244.83 244.8362 0.0025
f3 668.04 668.0401 -0.0045
f4 1262.22 1262.221 0.0001

4.1.2 Reference model with 8 nodes and fitting model with 15 nodes

To simulate the case where interpolation is necessary, a refined model is used as fitting model. In the present case, it is
necessary to interpolate the modes from the coarser reference model to the fitting model. The reference and interpolated
mode shapes are shown in Fig. 5 for 5 modes. Analyzing the superimposed mode shapes by visual inspection, it is seem
that up to the third mode there is a good representation, but after that, not so much. The MAC representation is not applied
here because of the different number of nodes between both models.
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Figure 4: Iteration history fitting and MAC representation of the isotropic beam using 4 modes. Reference and fitting
model with 8 nodes.

The first analysis considered three modes for fitting. Table 3 shows the resulting values for the fitted properties and
Fig.6 has the iteration history and MAC graphic representation. It is noted that the torsional spring modeling is badly
represented, but still the frequencies and mode shapes come to excellent agreement values.

39.69Hz

244.83Hz

668.04Hz

1262.22Hz

1988.88Hz

reference (dashed line) and interpolated (full line) modes interpolated modes only

Figure 5: First 5 modes for the isotropic beam, modeled with 7 elements (8 nodes).

Table 3: Fitted properties and frequencies for the isotropic beam using interpolated models(nmodes = 3, cconv = 1e-5.)
name Ref. ∆θi θ0(initial) θconv (final)

1 E 61.e9 0.01 30.0e9 52.84e9
2 Kx 50e6 0.05 10.e6 43.27e6
3 Kα 100e3 0.05 10.e3 256.26e3

Ref. freq.(Hz) fitted freq. (Hz) Error (%)
f1 39.69 39.69220 0.0055
f2 244.83 244.8362 0.0025
f3 668.04 668.0400 0.0000

4.2 Generic composite flat plate

To apply the methodology to an orthotropic plate, a model with the same dimensions of those described by de Souza
et al. (2013) is used. Here, the properties of a glass-epoxy(Gl.-Ep.) fabric (as given by Reddy (1997)) are considered,
with a density of 1900 kg/m3. Detailed properties values are given in Tab. 4.

This is a simplified composite model, since it has only one layer of thickness of 2mm, with a single orientation θk for
the whole model. However, three different variations are simulated: θk = 0o, 45o and 90o. The model is seen in Fig. 7,
where the reference angle for the material orientation is given. Modal shape results are presented in Fig. 8, where the
influence of the orientation θk is easily observed. First, there is a mode crossing between the second and third modes,
where the first torsion changes place with the second bending form 0o to 900. In the middle, the second and third modes
present a mixed behavior, for θk = 45o.
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Figure 6: Results for a run of the isotropic beam using 3 modes. Reference model: 8 nodes. Fitting model: 15 nodes .

Table 4: Design variable values used in the reference model for the orthotropic plate made of Gl-Ep.
θi Reference value

1 E1 53.0e9 Pa
1 E2 17.9e9 Pa
1 G12 8.9e9 Pa
2 ν12 0.25 N/m

ρ 1900.0 kg/m3

et 2e-3 m

Reference frequencies (Hz)
f(Hz) θk = 0o θk = 45o θk = 90o

f1 18.82 12.69 10.93
f2 79.12 75.86 66.40
f3 114.35 92.14 74.07
f4 253.16 209.84 181.31

0.3

0.1

x2

x1

θk0o

Figure 7: Composite flat plate model dimensions showing
the lamina reference angle. The global coordinates follow
the aviation practice, where x1 points to the wind direction
and x2 is parallel to the wing.

0o

18.82Hz 79.12Hz 114.35Hz

45o

12.69Hz 75.86Hz 92.14Hz

90o

10.93Hz 66.40 Hz 74.07Hz

Figure 8: First 3 modes for orthotropic plate, for θk =
0o, 45o and 90o.

Only these three modes will be considered in the analysis in the present work. The fourth mode frequency is listed in
Tab. 4 to show the distance to the third one. For aeroelastic purposes, it is expected that this mode will not present a large
influence on stability or LCO results.

The reference FE model is composed of 42 nodes and 30 quadrilateral elements (CQUAD4). The first analysis consists
in adjusting this model, where the reference model has the specified properties and the fitting model is setup with lower
arbitrary tentative values. The design variables are the lamina engineering properties E1, E2 and G12.

In the case of orthotropic plates, the lamina orientation plays and important role. Here, θk is initially set to 0o. The
convergence is very fast, when using only three modes. However, from Tab. 5 it is noticed that not all variables were
correctly fitted, and the value of E2 obtained was way above the reference value. Analyzing the model and mode shapes
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on Fig. 8, it is observed that for θk = 0o, E2 is not very significant for the modes behavior, and the modal response is
governed more by the E1 and G12 contributions to the bending and torsion modes encountered.

Now applying the fitting process to the plate with θk is initially set to 45o, the response is closer for all design variables,
but still not ideal. In this case, the second and third modes present a mixed behavior, where all the three engineering
parameters participate in a certain amount. The fitted frequencies, on the other side, show an excellent agreement with
the reference one, as well as the mode shapes, as indicated by the MAC matrix representations on Fig. 10.

Finally, when applying the fitting process to the plate with θk is initially set to 90o, the response is very good for E2

and G12, but not for E1, as seen on Tab. 7. This is also related to the influence of E1 on the first three mode shapes that
were taken as reference for the fitting process.

Here, it is necessary to recall the goal of the fitting parameters process in the aeroelastic analysis area: obtain parame-
ters for the numerical model so that it represents adequately the modal behavior of the physical model.

Table 5: Fitted properties for the Gl.-Ep. model (nmodes = 3, cconv = 1e-5.) - θk = 0o

name Ref. ∆θi θ0(initial) θconv (final)
1 E1 53.0e9 0.01 10.0e9 52.53e9
2 E2 17.9e9 0.05 5.e9 37.91e9
3 G12 8.9e9 0.05 1.e9 8.86e9

Ref. freq. (Hz) Fitted freq. (Hz) Error (%)
f1 18.82 18.82 0.000
f2 79.12 79.12 0.000
f3 114.35 114.35 0.000

Table 6: Fitted properties for the Gl.Ep. model (nmodes = 3, cconv = 1e-5.) - θk = 45o

name Ref. ∆θi θ0(initial) θconv (final)
1 E1 53.0e9 0.01 10.0e9 54.23e9
2 E2 17.9e9 0.05 5.e9 16.06
3 G12 8.9e9 0.05 1.e9 10.14e9

Ref. freq. (Hz) Fitted freq. (Hz) Error (%)
f1 12.69 12.83 1.1032
f2 75.86 75.86 0.0000
f3 92.14 92.14 0.0000

Table 7: Fitted properties for the Gl.-Ep. model (nmodes = 3, cconv = 1e-5.) - θk = 90o

name Ref. ∆θi θ0(initial) θconv (final)
1 E1 53.0e9 0.01 10.0e9 13.29e9
2 E2 17.9e9 0.05 5.e9 17.63
3 G12 8.9e9 0.05 1.e9 8.88e9

Ref. freq. (Hz) Fitted freq. (Hz) Error (%)
f1 10.93 10.94 0.0915
f2 66.40 66.40 0.0000
f3 74.07 74.07 0.0000

4.2.1 Study of interpolated models

To continue the verification of the methodology, it is necessary to test reference and fitting models with a different
number of nodes, what makes necessary to perform an interpolation process prior to the fitting process. A FE model with
63 nodes and 48 quadrilateral elements is used as fitting model for this case. The analysis follows a similar procedure as
in the described above, where the fitting is performed for different orientations.

First, the model with θk = 0o is analyzed with the same initial values used in the above cases, considering that there is
no knowledge about the actual values. From Tab. 8 and Fig. 11 it is observed that the same behavior of previous analyzes:
the E2 result for the first run is not close to the reference value, despite the frequencies and MAC results being adequate.

From the results of the first run, new initial values are used for θk = 90o, as seen on Tab. 9. These values are very
close to the fitted values given in Tab. 8. Now, the values for all three variables are very close to the reference ones.
Frequencies and mode shapes results are very good.

Table 8: Fitted properties for the interpolated Gl.-Ep. model (nmodes = 3, cconv = 1e-5.) - θk = 0o

name Ref. ∆θi θ0(initial) θconv (final)
1 E1 53.0e9 0.01 10.0e9 52.29e9
2 E2 17.9e9 0.05 5.e9 7.66e9
3 G12 8.9e9 0.05 1.e9 9.09e9

Ref. freq. (Hz) Fitted freq. (Hz) Error (%)
f1 18.82 18.57 -1.3284
f2 79.12 79.12 0.0000
f3 114.35 114.35 0.0000

Table 9: Fitted properties for the interpolated Gl.-Ep. model (nmodes = 3, cconv = 1e-5.) - θk = 90o

name Ref. ∆θi θ0(initial) θconv (final)
1 E1 53.0e9 0.01 50.0e9 50.83e9
2 E2 17.9e9 0.05 7.e9 17.42e9
3 G12 8.9e9 0.05 8.e9 8.80e9

Ref. freq. (Hz) Fitted freq. (Hz) Error (%)
f1 10.93 10.78 -1.3724
f2 66.40 66.40 0.0000
f3 74.07 74.07 0.0000
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Figure 9: Convergence history for the Gl.Ep. model, considering three modes. On the left, results for θk = 00 and on the
right for θk = 900 .
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Figure 10: MAC matrix representation for Gl.Ep. model with θk = 00 ,45o and 900 .
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Figure 11: Convergence history for the interpolated Gl.-Ep. model, considering three modes. On the left, results for
θk = 00 and on the right for θk = 900 .
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4.3 Carbon fiber flat plate - comparison with experiment

The present methodology is applied to the numerical model fitting using the experimental results described in de Souza
et al. (2013). In that work, composite flat plates designed for aeroelastic studies were characterized aiming definition of
modal parameters for aeroelastic purposes. The geometric model is the same of Fig. 7, but the material here is carbon
fiber and epoxy matrix. Also, the thickness of the models are only 1.5mm. A total of five plates were considered. From
the total mass of the plates and their volume, it was possible to compute the density, that is 1427 kg/m3.

A first run was performed with θk = 0o, and the results are shown in Tab. 10 and Fig. 12 (a). Again, results are very
good for frequency values and mode shapes. Since now there is no information about the engineering parameters of the
experimental models, it is not possible to compare values.

Considering that the obtained parameters are good, they are rounded off to serve as input values for the analysis of
θk = 90o, as seen on Tab. 11. A fast convergence is obtained in this case also, and values are very close to the previous
one. As in the other cases, frequencies and mode shapes match with reference values.

To complete the study, the obtained parameters were used in the FE model to obtain frequencies and mode shapes for
the 5 different orientations described by de Souza et al. (2013). From the first case, is taken as E1 = 92.7 GPa. From the
second case, E2 is made 6.7 GPa. The in-plane shear module G12 is taken as an average between both cases, i.e., 4.35
GPa. The resulting frequencies and mode shapes match the experimental results, as seen on Fig. 13.

Table 10: Fitted properties for the experimental model (nmodes = 3, cconv = 1e-5.) - θk = 0o

name ∆θi θ0(initial) θconv (final)
1 E1 0.05 30.0e9 92.71e9
2 E2 0.05 5.e9 4.39e9
3 G12 0.05 1.e9 4.09e9

Ref. freq.(Hz) Fitted freq.(Hz) Error (%)
f1 20.8 21.44 3.0769
f2 53.12 53.12 0.0000
f3 130.37 130.36 -0.0077

Table 11: Fitted properties for the experimental model (nmodes = 3, cconv = 1e-4.) - θk = 90o

name ∆θi θ0(initial) θconv (final)
1 E1 0.01 90.0e9 86.82e9
2 E2 0.05 5.e9 6.76e9
3 G12 0.05 4.e9 4.68e9

Ref. freq.(Hz) Fitted freq.(Hz) Error (%)
f1 5.7 5.79 1.5789
f2 35.25 35.22 -0.0851
f3 45.87 45.80 -0.1526
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Figure 12: Convergence history for the experimental model, considering 3 modes. On the left, results for θk = 00 and on
the right for θk = 900 .
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Frequencies (Hz)
θk 1st bending 1st torsion 2nd bending
(o) EMA fitted EMA fitted EMA fitted
0.0 20.8 21.45 130.37 130.39 53.12 54.37

30.0 9.7 11.00 59.12 59.38 84.75 85.73
45.0 7.2 8.01 44.12 48.08 67.12 68.58
60.0 6.6 6.53 39.50 39.89 57.25 55.36
90.0 5.7 5.76 35.25 35.04 45.87 44.24
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Figure 13: Frequencies obtained with fitted numerical models compared to experimental values.

5. CONCLUDING REMARKS

This paper discussed the modal parameters fitting of composite flat plates. These plates are intended for use in
aeroelastic analysis, where a numerical model with adequately adjusted frequencies and mode shapes is employed in the
structural side of the problem. The method has been implemented numerically, coupling MSC Nastran TM and Matlab TM.

The sensitivities are calculated by finite differences, what showed to be efficient for the present work purposes. The
application of interpolation methods is necessary to bring the reference mode shapes to the studied model. This process
has to be done with special attention because modes not adequately represented by the experiments, when included in the
fitting process, can affect the results.

The next steps include a few tasks to improve the present methodology. It is shown to be necessary a refinement of the
interpolation procedures, to transmit also the boundary conditions. Also, when applying the methodology to composite
plates, made of orthotropic material, the condition where the sensitivity to certain design variable is very low can lead to
instabilities in the fitting process. This effect needs to be addressed. To complete the tests, it is necessary to apply the
same equivalent springs to the plate models, trying to represent the experimental boundary conditions.

For aeroelastic purposes the goal is to have the same modal response, and the results expected is to have adequately
fitted frequencies and associated mode shapes. The methodology as implemented in the present work satisfies this goal,
and is already being employed in aeroelastic analyses.
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