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Abstract. A great challenge today is conciliation of water resources utilization with the expansion of cities and human 

activities. Considering that the water quality of a given water body is necessarily evaluated through the analysis of 

some biological, physical and chemical parameters, mathematical and computational models able to describe the 

behavior of such parameters can be an useful tool, given their ability to generate scenarios and, as a consequence, the 

possibility to support decisions regarding water resources management. In this work, Inverse Problems techniques are 

applied to estimate the source parameters (intensity and position) of a hypothetical conservative pollutant released in 

estuarine waters. The studied case here is the estuary of Macaé River, located in the brazilian southeast coast. The 

pollutant transport was modeled by the advection-diffusion equation, here solved by the Finite Element Method and the 

Finite Difference Method. The hydrodynamics parameters were assumed known and the mesh applied to the domain 

was defined according to the discretization method used to solve the direct problem. For estimation of source position 

here were used the Luus-Jaakola (LJ), the Particle Collision Algorithm (PCA) and the Ant Colony Optimization (ACO) 

Methods, and to estimate the source intensity was used the Golden Section Method. Besides, a sensibility analysis of 

hypothetical sampling sites position regarding the source parameters (intensity and position) was performed. In this 

study, synthetic pollutant concentrations with and without noise were used. For the noiseless data, all methods have 

successfully achieved the objective function in more than 90% of executions. Considering the number of estimates from 

different points on the location and also the computational cost, the PCA Method showed the highest performance. On 

the other hand, for the data with ± 5% of noise, all methods had efficiency greater than 85%. Considering the number 

of estimates from different points on the location, and also the computational cost, again the PCA method showed the 

best performance. The results of this study demonstrated the potentiality of the Inverse Problems technique to estimate 

with satisfactory accuracy the location and intensity of a given pollutant source released in estuarine environments, 

something that can also contribute to possible environmental liabilities identification. 

 
Keywords: pollutant transport, determination of sources, inverse problem, finite element method, finite difference 

method. 

 

1.  INTRODUCTION 
 

The water environment considered in this work is is the estuary of the Macaé River, located on the north coast of the 

state of Rio de Janeiro, Brazil. The preservation of such environments is justified by great biological diversity. The 

problem proposed here is to identify the origin and magnitude of a hypothetical release of pollutant that is diluted in the 

waters of the estuary. Then, is implemented the solution of the direct problem, here modeled by transport equation. This 

model describes the behavior of a contaminant, involving hydrodynamic parameters, dispersion and a term that 

represents sources or sinks. The model is coupled with computational intelligence methods for parameter estimation 

(inverse problem) that can express the location and intensity of the pollutant source considered. Thus, the main 

objective is the estimation of sources through such parameters. 

Concerning the determination of parameters related to pollutant sources of transport models follow some works 

developed. Shen and Kuo (2001) use a two-dimensional model of eutrophication laterally integrated to model eight state 

variables of water quality. In the model, 13 parameters from the source term are estimated, which are functions that 

describe the time rate of growth (or decline) mass by biochemical reactions and external addition (or removal) of the 

state variables. Revelli et al. (2004) and Revelli and Ridolfi (2005) estimate a function belonging to a source term of a 

one-dimensional transport problem of pollutants into channels. The source term is composed of two functions (one 

spatial and another temporal), being the temporal function calculated with boundary conditions and concentrations in a 

known location. Yang and Hamrick (2005) estimate open boundary conditions in a three-dimensional transport model 

of salinity in an estuary. Shen et al. (2006) estimate nonpoint sources of fecal coliforms in an estuary. Specifically, 
regarding the estimation of the location of sources or sinks in models of pollutant transport, developed studies were not 

found in literature. 
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2.  TRANSPORT PROBLEM OF CONSTITUENTS 
 

The transport of constituents can be described by the advection-diffusion equation (Anderson, 1995; Miranda et al., 

2002), which vertically integrated assumes the change in concentration is negligible in the vertical direction. Thus, the 

two-dimensional representation of constituents transport is expressed by 
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For the boundary conditions (Neumann type) and initial condition considered respectively, 
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where ),( ll yx  represent the boundaries and n
r

 the normal vector to them.  

 

For the discretization of the transport model was applied the Finite Element Method (FEM) for the discretization in 

space (Zienkiewicz and Taylor, 1994, 2000; Domínguez and Hernández, 2007) and the Finite Difference Method 

(FDM) for discretization in time (Smith, 2004). Finally, we obtain a system of algebraic linear equations (SALE), being 

solved using the Gauss-Seidel Method (GSM) which is convergent when the system has diagonal dominant (Cunha, 

2000). 

The field of study of the Macaé River estuary, located in the city of Macaé in the state of Rio de Janeiro, was 

defined via satellite photos, spanning almost 20 km, from the headwaters to the coast. The bathymetry data (depth 

according to the mean sea level) of the coast region were taken from the nautical chart 1507, published by the Navy of 

Brazil in 1974, while the upper region was obtained from Amaral (2003). Due to the limited available bathymetry data 

of the upper region, the data used were linearly interpolated. For the coast, the data have referred to the nearest existing 

bathymetry. It is worth noting also that these data are outdated due to several changes in the estuary and nearby 

performed by human action in recent decades. 

Figure 1a shows an example of satellite photo used for the definition of the field of study. In Figure 1b is shown the 

estuary geometry and the used bathymetry data. The spatial mesh consists of 600 nodes with 917 triangular finite 

elements, defined after a study of consistency, stability and convergence about the discretization method. 

The hydrodynamic model was not solve and because does not exist information about the hydrodynamic variables of 

the estuary, the vectors of the velocities in the fluvial area were admitted constant with 1|| =v
r

m/s along the river and in 

the coastal region varies with time, with )0),/(cos( fttv π=
r

m/s, where hst f 1243200 == . As the variation of the 

water level also is not available, the water column was considered simply the bathymetry. The parameters of dispersion 

were considered Dxx=2m²/s, Dxy=Dyx=0m²/s, Dyy=2m²/s. 
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Figure 1. Satellite photo (By: Google Maps) and geometry and bathymetry data (m) of the Macaé River estuary 

 

3.  FORMULATION OF THE INVERSE PROBLEM 
 

The transport problem of constituents, represented by the advection-diffusion equation (Eq. 1), with the boundary 

conditions (Eqs. 2 and 3), hydrodynamic variables and adopted parameters is defined as the Direct Problem (DP). 

The problem of estimating the source of contaminants was formulated as an Inverse Problem (IP), which is assumed 

known experimental measurements of concentration and is intended to estimate the location and intensity of a source, 

represented by parameters of the transport problem (DP). 

As the number of experimental data is usually larger than the number of unknowns, the inverse problem is 

formulated as an optimization problem of finite dimension, which seeks to minimize the objective function that is the 

sum of squared residues between the calculated and the measured values of the observed variable, 
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where medG
r

 is the vector of measures available, 

calcG
r

 is the vector of the calculated values, 

P
r

 is the vector of unknowns, 

R
r

 is the vector of residuals. 

 
The main objective is to estimate the location and intensity of a single source, punctual and constant. In this 

scenario, it is important to understand that the location of the source is not just a parameter of the proposed transport 

model, but a punctual position (node) in the middle of the two-dimensional discretized estuary. Thus, it is necessary a 

different treatment from any other parameter analysis. The parameter of source intensity (kg/m³s) even constant, but 

located in separate positions, can lead to one source with different mass flow (kg/s), because the finite elements 

(triangles) have different dimensions and intensity in each finite element is the average of their nodes, and the node of 

the source location may belong to different elements. 

A sensibility analysis was accomplished (Beck et al., 1985) to evaluate the identification possibility of the 

parameters front to the transport model. Then, three possible positions of sources were analyzed separately considering 

the intensity parameter F=1kg/m³s, with five possible positions of collect sensors of the concentration data. Figure 2 

shows the locations of the sources and sensors. 
Through the sensibility analysis the identification possibility was verified from the referring parameters to the 

source, as well as strong lineal correlation among them. In that way, we choose that to each estimate of a location of the 

source is estimate your intensity for this location. With that, to each point (estimate location) an one-dimensional 

algorithm of estimation can be used for the intensity, of easy use, that covers a considerable interval of possibilities. 

The considered sampling data are synthetic data generated from resolving the transport problem (DP), represented 

by Eq. (1), using known parameters and a time discretization st 180=∆  in a period of 6horas (21600s). 
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Figure 2. Locations of the sources and the collect sensors of data 

 

The location of the source considered is the location 
2L  (Fig. 2) with an intensity parameter F=1kg/m³s. The 

sampling data are concentration data at locations 54321 ,,,, SSSSS  (Fig. 2) for each hour (1, 2, 3, 4, 5, 6 [hours]). 

Therefore, sampling data comprising 30 data with 5 locations and 6 times. 

All programming of the direct problem and the inverse problem was developed in C++ language as well as most 

numerical analyzes performed. The computational cost of each execution of the DP depends on the location and 
intensity of the source. For the scenario considered real, to be estimated, with the intensity and location known, the 

computational cost of execution of the DP is approximately 8.86s considering an accuracy of 210−  to the solution of the 

SALE (PC with processor Intel Core i5, 2.67 GHz and 4 GB of RAM memory, using Windows 7 Professional operating 

system). 

 

4.  META-HEURISTICS 
 

To estimate the location of the source were applied the methods Luus-Jaakola (LJ), the Particle Collision Algorithm 

(PCA) and Ant Colony Optimization (ACO), and to estimate the intensity the Golden Section method (GS). Regarding 

the estimation of the location, if the point has already been previously estimated, goes up for a new iteration of the 

applied methods, using their stored information if necessary. Estimated a new point, the method GS is then used to 

estimate the source intensity at that point. To emphasize, the objective function of the minimization problem is the sum 

of squared residues (SSR) between the calculated data and sampling data (Eq. 4). 

The choice of the method LJ is due to its characteristic purely geometrical, by reducing the search region leading a 
tendency of global search to a local search with passing of the iterations (Luus e Jaakola, 1973). The PCA method has a 

feature that evaluates with its operators when performing a global, local, or totally random search (Sacco et al., 2006). 

The use of the method ACO is justified because it is a proposed method for solving discrete problems, which is the case 

here considered (Dorigo et al., 1996; Silva Neto e Becceneri, 2009). For estimation of intensity parameter, the Golden 

Section method was chosen because it has the characteristic of reducing a one-dimensional search interval, which in this 

case is defined by only one parameter (Bazaraa et al., 2006). 

As modifications of these meta-heuristics, for the method PCA is just accomplished a modification in the function 

“Perturbation” of the method given by Sacco et al. (2006), presented in Fig. 3. 

Already for the method ACO, the modifications in the method given by Dorigo et al. (1996) are similar 

modifications proposed by Silva Neto and Becceneri (2009). As the source location is defined by a point of the space 

mesh which is irregular, it is not possible to use two-dimensional coordinates for implementing the method ACO. Thus, 
we propose to represent the grid points by a vector, obtaining also a vector of probability and another of pheromone. To 

keep the idea of a two-dimensional geometry and also to value the neighborhood of points, since the same point already 

selected not recalculate the direct problem, the pheromone is updated not only to the selected point, but a neighborhood 

within a defined ray, decreasing with distance from the selected point. The algorithm of the ACO method used for the 

minimization problem is shown in Figs. 4 and 5. 
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Figure 3. Function “Perturbation” 

 

 
Figure 4. Pseudo code for ACO 

 

 
Figure 5. Function “Generate_Population” 

 

Generate_Population () 

 
     for k = 1 to nf 

          Rand = Random(0, 1) 

          if Rand < 0q  

               kx  = solution with larger pheromone 

          else  

               Rand = Random(0, 1) 

               kx  = solution associated with Randpci ≥  and min( Randpci − ) 

          end 
     end 
 
end 
 

 

Define the number of ants of the population nf, the deposit rate of pheromone 0f , the evaporation 

rate of pheromone ef , with 10 <≤ ef , the space of performance of pheromone dr, the roulette 

parameter 0q , with 10 0 ≤≤ q , and the maximum number of generations gmax 

Compute the initial matrix 
)0(

F , with 0=if , and the initial matrix )0(PC , with 0=ipc , where   

i = 1 to nn (number of nodes) 
Generate the initial population of nf ants like random solutions and evaluate them 

Do the best ant of the population be nx  

 

for g = 1 to gmax iterations 
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     Generate_Population () 

     Evaluate Population 

     Do the best ant of the population be nx  

end 
 

 

Perturbation () 

     for i = 1 to Dimension 

          Upper = Superior Limit [i] 

          Lower = Inferior Limit [i] 

          Rand = Random(0, 1) 

          New_Config = (Old_Config[i] + Lower + (Upper – Lower)*Rand))/2  
     end 
end 
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5.  ESTIMATION OF THE CONTAMINANTS SOURCE 
 

For the application of meta-heuristics in the source estimation can define different stop criteria besides a maximum 

number of iterations/generations. For the meta-heuristics applied in the estimation of the source location, the stop 

criteria used were: successful with the objective function for the estimated point, defined smaller than a desired 

considerable value, and a maximum number of different estimated points (also referred with a maximum number of 

evaluations of the objective function). The maximum number estimation of different points was regarded 60, which 

represents 10% of the total number of nodes of the space mash. Regarding the estimation of the source intensity, 

specifically the application of the Golden Section method, the stop criteria is the size of the interval be smaller than a 

desired value. Moreover, each method stores and updates the best result during its iterations/generations. 

The operators of the LJ method were defined as n
out

 = 10, n
int

 = 10 and ε = 0.30. This way, we can estimate up to 100 
points, reminding that equal points do not perform the direct problem. The reduction of side of the squares in the search 

region is 30% to each external iteration, which represents a reduction of 51% in area. The initial search region used is a 

square with side of 10000m. The operators of PCA method were defined as Nmax = 50 e ne = 5, and the random 

solution of the “Scattering” function was annulled setting 0=scatteringp . The operators of ACO were defined as nf=20, 

1.00 =f , 03.0=ef , 2.00 =q , dr=500 e gmax=50. For these methods used in the estimation of the source location we 

tested different values for its operators, which empirically, were defined by the best results. 

For the use of the GS method was used the initial interval [0.1; 3.913] with the stop criteria 5.0=fl . This interval 

was chosen to allow estimation of a value close to the real intensity parameter of the source which is 1 with a smaller 

number of iterations. In this conditions, seven different intensities are calculated for the selected location, namely the 

direct problem is calculated seven times every new estimated location. 

20 executions were accomplished for each meta-heuristic, which are then compared by a nonparametric test, the 

Wilcoxon signed rank test (Kanji, 2006), considering a confidence level of 95%. In Table 1 are presented the averages 

of the results and in Tab. 2 the comparison of the efficiency of the methods in terms of objective function (SSR), the 

number of different estimated points for the location (NP) and the computational cost (time). 

 

Table 1. Summary of mean of the applications of different meta-heuristics 

Methods Success (%) NP Time (s) 

LJ-SA 100 40 2094,15 

PCA-SA 95 24 1362,55 

ACO-SA 90 36 1906,30 

 

Table 2. Wilcoxon test for comparison of meta-heuristics 
Compared 

Criterion 

Compared 

Methods 

R+ R– Critical 

Value 

p-value Significant 

Difference? 

 LJ-SA vs. PCA-SA 95 115 52 1 No 

SQR LJ-SA vs. ACO-SA 85,5 124,5 52 0,5 No 

 PCA-SA vs. ACO-SA 94,5 115,5 52 0,5 No 

 LJ-SA vs. PCA-SA 185,5 24,5 52 0,0026 Yes 
NP LJ-SA vs. ACO-SA 125 85 52 0,4552 No 

 PCA-SA vs. ACO-SA 40,5 169,5 52 0,016 Yes 

 LJ-SA vs. PCA-SA 178 32 52 0,0064 Yes 

Time LJ-SA vs. ACO-SA 134 76 52 0,279 No 

 PCA-SA vs. ACO-SA 52 158 52 0,0479 Yes 

           Note: The best meta-heuristics are highlighted in bold. 

 

As can be seen in Tab. 2, the objective function achieved for the three meta-heuristics has no significant difference, 

evidencing the success of over 90% (Tab. 1). In terms of efficiency, the meta-heuristic PCA was superior, achieving 

success with the estimation of a smaller number of points (NP), besides a lower computational cost (time). 

In real situations with sampling data collected experimentally, there is always the existence of errors inherent in the 

equipment used, the numerical accuracy adopted, design of experiments, the experimental conditions and 

simplifications, and human errors in the experimental handling. 
Because of the use of synthetic data sampling and the impossibility of escape of experimental errors, it is proposed 

to introduce noise in the data to bring them closer to the reality of the experimental field. Furthermore, it is important to 

evaluate the methods of solving the inverse problem facing this adversity, with more realistic data. 

The noise introduced in the sampling data was at most 5% at around the same. The operators of the meta-heuristics 

used were the same as in previous applications. 

Then, 20 executions were accomplished for each meta-heuristic, which are then compared by Wilcoxon test, 

considering a confidence level of 95%. In Table 3 are presented the averages of the results and in Tab. 4 the comparison 
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of the efficiency of the methods in terms of objective function (SSR), the number of different estimated points for the 

location (NP) and the computational cost (time). 

 

Table 3. Summary of mean of the applications of different meta-heuristics using data sampling with noise 

Methods Success (%) NP Time (s) 

LJ-SA 95 39 2124,8 

PCA-SA 90 26 1475,45 

ACO-SA 85 43 2088,15 

 

Table 4. Wilcoxon test for comparison of meta-heuristics using sampling data with noise 
Compared 

Criterion 

Compared 

Methods 

R+ R– Critical 

Value 

p-value Significant 

Difference? 

 LJ-SA vs. PCA-SA 96,5 113,5 52 1 No 

SQR LJ-SA vs. ACO-SA 88 122 52 0,875 No 

 PCA-SA vs. ACO-SA 94 116 52 0,5 No 

 LJ-SA vs. PCA-SA 170,5 39,5 52 0,0145 Yes 

NP LJ-SA vs. ACO-SA 80 130 52 0,3505 No 

 PCA-SA vs. ACO-SA 21,5 190,5 52 0,0018 Yes 

 LJ-SA vs. PCA-SA 158 52 52 0,0479 Yes 

Time LJ-SA vs. ACO-SA 114 96 52 0,7369 No 
 PCA-SA vs. ACO-SA 39 171 52 0,0137 Yes 

           Note: The best meta-heuristics are highlighted in bold. 
 

As in previous applications, even when using sampling data with noise, the objective function achieved for three 

meta-heuristic has no significant difference which can be seen in Tab. 4, evidencing the success of over 85% (Tab. 3). 

In terms of efficiency, the meta-heuristic PCA was superior again, achieving success with the estimation of a smaller 

number of points (NP), besides a lower computational cost (time). 

 

6.  CONCLUSIONS 
 

To estimate the location and intensity of the source in the proposed transport problem of the idealized Macaé River 

estuary, it is perceived through sensibility analysis that both parameters are correlated, which makes the estimation 

procedure hard through the inverse problem. According to this aspect, alternatively was chosen to estimate the location 
of the source, and during this process, for each specific location, estimating the intensity parameter. 

Using synthetic sampling data without noise the meta-heuristics applied were comparably efficient to estimate the 

location and intensity of the source with respect to the objective function (SSr) succeeding in more than 90% of 

executions. Considering the number of different estimated points for the location and also the computational cost, the 

PCA method was superior.  

With the use of noise on the order of 5% in the sampling data, the meta-heuristics applied were again efficient as the 

objective function, successfully greater than 85%, without showing significant difference between them. When 

evaluating the number of different estimated points to the source location and the computational cost, once again the 

PCA method overcomes the implementation of the methods LJ and ACO. 

A new perspective of improvement of the results would be the application of hybrid methods, engaging different 

methods in a single goal, with different characteristics, using what there is best individually. This task of subtle 

experimentation is part of the work continuity of sources estimation of pollutants in rivers and estuaries. 
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