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Abstract. This work presents an analytical solution for fully developed forced convection of power-law fluid in a 
channel partially filled with porous medium. The lower part of the channel is occupied by a clear fluid while the upper 
part is occupied by a fluid-saturated porous medium. A uniform heat flux is imposed at the lower part of the channel. 
The energy and the momentum macroscopic equations are utilized for obtained the analytical solution for temperature 
distributions, as well as for the Nusselt number. 
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1. INTRODUCTION 

 
In petroleum production there are many parameters that must be analyzed before deciding if an oil well is 

economically viable and whether the oil exploitation from a natural reservoir is possible or not. One of the main 
parameters usually considered by financial analysts and the technical staff to enable oil production is the estimation of 
the reservoir Productivity Index (PI). In this sense, mathematical tools can be crucial to take a decision, since it is 
usually not possible to reproduce the problem in experimental simulation because of the high complexity of the problem 
in question. 
 In this context, the mathematical tool plays a significant role in several industries. It has been the focus of many 
private and public agencies for development and researches around the world. 
 Ochoa-Tapia and Whitaker (1995a-b) proposed an analytical expression to take into account the variation of the 
shear stress jump at the interface between clear fluid and porous medium. 
 Kuznetsov (1996-99) used in his works the boundary condition proposed by Ochoa-Tapia and Whitaker (1995a-b) 
to obtain an analytical solution for a Newtonian fluid flow in a channel partially filled with porous material. 
 Inoue and Nakayama (1998) investigated the viscous and inertia effects in pressure drop in non-Newtonian fluid 
flow across a porous medium. The porous medium was simulated by periodic spatially array of cubes. The numerical 
results were used to obtain a macroscopic relationship between pressure gradient and mass flow rate. 
 Pearson and Tardy (2002) presented an overview on the continuum transport models in porous media, and the 
length scale needed to transport the phenomena from the pore scale to Darcy continuum scale, using variables average. 
The authors examined the influence of non-Newtonian rheology to the parameters of transport mono and multi-phase, 
that is, the Darcy viscosity, the dispersion length and the relative permeability. 

 Papatzacos and Skjæveland (2006) studied the diffuse-interface model for the two-phase flow of a one-component 
fluid in a porous medium with the following characteristics: (i) a unified treatment of two phases as manifestations of 
one fluid with a van der Waals type equation of state, (ii) the inclusion of wetting, and (iii) the absence of relative 
permeabilities. The authors show that relative permeabilities depend on the spatial derivatives of the saturation.  

Chandesris and Jamet (2006) investigated the velocity boundary condition that must be imposed at an interface 
between a porous medium and a free fluid. They concluded that the continuity of the velocity is recovered and a jump in 
the stress built using the viscosity appears. These results also indicated an explicit dependence of the stress jump 
coefficient to the internal structure of the transition zone and its sensitivity to this microstructure is recovered. de Lemos 
and Silva (2006) studied the turbulent fluid flow in channel partly filled with porous material. The results indicated that 
depending on the value of the stress jump parameter, substantially dissimilar fields for the turbulence energy are 
obtained. Negative values for the stress jump parameter gave results closer to experimental data for the turbulent kinetic 
energy at the interface. de Lemos and Silva (2006) analyzed the turbulent flow fluid in the channel composed by porous 
region and a clear fluid region. They conclude that the penetration extent of turbulence was Darcy number and porosity-
dependent. 

Al-Amiri, et al., (2008) investigated the wall heat conduction effect on the natural-convection heat transfer within a 
two-dimensional cavity, filled with a fluid-saturated porous medium. The authors concluded that the temperature of the 
interface is sensitive the dimensionless groups: Darcy, Rayleigh numbers and the porosity, area ratio, etc. Kumar, et al., 
(2009) analyzed the fully developed combined free and forced convective flow in a fluid saturated porous medium 
channel bounded by two vertical parallel plates, where the fluid flow was modeled using Brinkman equation model. 
Kumar, et al., (2009) obtained analytical solutions for the governing ordinary differential equations by perturbation 
series method and found that the presence of porous matrix in one of the region reduces the velocity and temperature. 
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Valdés-Parada, et al., (2009) studied the momentum transfer between a homogeneous fluid and a porous medium in 
a system analogous to the one used by Beavers and Joseph (1967) , using volume averaging techniques. The authors 
proposed a closed generalized momentum transport equation that is valid everywhere and is expressed in terms of 
position-dependent effective transport coefficients. 

Nield and Kuznetsov (2009) modeled analytically the fluid flow in a three-layer channel composed by a transition 
layer sandwiched between a porous medium and a fluid clear of solid material. Kuznetsov and Nield (2010) presented 
an analytic investigation of forced convection in parallel-plate channel partly occupied by a bidisperse porous medium 
and partly by a fluid clear of solid material. They authors found a singular behavior of the Nusselt number for the case 
of asymmetric heating. Saito and de Lemos (2010) proposed a model for turbulent flow and heat transfer in a highly 
porous medium applied to a porous channel bounded by parallel plates. Saito and de Lemos (2010) showed that for 
laminar and turbulent flows the thermal dispersion mechanism leads to larger local temperature differences.  

Aguilar-Madera, et al., (2011) solved effective-medium equations for modeling momentum and heat transfer in a 
parallel-plate channel partially filled with a porous insert. The authors found that the thermal performance is improved 
by either increasing the size of the porous insert or by favoring mixing inside the channel. 

Singh, et al., (2011) studied the transient as well as non-Darcian effects on laminar natural convection flow in a 
vertical channel partially filled with porous medium. The authors obtained, using perturbation technique, approximate 
solutions for velocity field with Darcy number, Grashof number, kinematic viscosity ratio, distance of interface and 
variations in temperature distribution with thermal conductivity ratio.  

Silva and de Lemos (2011) investigated the turbulent flow in channel with a centered porous material. This work 
showed that the increasing the size of the porous material pushes the flow outwards, increasing the levels of turbulent 
kinetic energy at the macroscopic interface. 

Nimvari, et al., (2012) studied the turbulent flow and heat transfer through a partially porous channel. The authors 
found that the turbulent kinetic energy is significant in both the clear fluid region and the porous region. Furthermore, 
they show that the peak of turbulent kinetic energy occurs around the porous/fluid interface and penetration depth of 
turbulent kinetic energy in the porous layer is independent of Da number. 

The work of Cekmer, et al., (2012) studies the fully developed heat and fluid flow in a parallel plate channel 
partially filled with porous layer. The authors show results that for a partially porous filled channel, the value of overall 
performance is highly influenced from Darcy number, but it is not affected from thermal conductivity ratio (kr) when 
kr>2. 

However, so far, there seems to be in the literature no mathematical tool able to reproduce adequately the power-
law fluid flow in a channel with porous material. Therefore, this work aims to present analytical solution, along with an 
appropriate boundary condition for variation of the exchange of momentum in the interface for the steady state fully 
developed power-law fluid flow, with constant properties, permeating a channel partially filled with homogeneous and 
isotropic porous material saturated by an incompressible and monophasic fluid.  
 
2. PROBLEM FORMULATION 

 
2.1 Geometry 

 
Figure (1) describes a schematic diagram of a fully developed power-law fluid flow in steady state in a channel 

partially filled with porous material. The fluid flow with constant properties flows from left to right, permeating the 
porous structure (porous medium) and the clear region (clear fluid). A uniform heat flux is imposed at the lower plate. 
The boundary conditions used are: y=0, no-slipping condition; y=H, symmetry condition. 

 
Figure 1: Scheme of a fluid flow in a channel partially filled with porous material. 

 
2.2 Governing Equations 
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The macroscopic equations governing the power-law fluid flow in channel with a rigid, homogeneous, isotropic 
porous medium saturated by an incompressible fluid, without taking into account the Forchheimer drag term, has the 
following form: 
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are, respectively, the apparent viscosity in a porous medium, PM , and the apparent viscosity in a clear fluid,  . 

The variable K is the permeability of the porous media,  is the porosity of the porous media, ip  is the intrinsic 
average pressure, Du  is the Darcy velocity, n is the flow behavior index, m is the consistency index of the fluid, cf is the 
specific heat of the fluid, keff is the effective thermal conductivity of the porous medium, kf is the thermal conductivity 

of the fluid, iT  is the intrinsic average temperature. 
 

2.3 Boundary Conditions 

 
In 0y , the no-slipping condition and the uniform heat flux have been applied, i.e., 
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In 
2
Hy  , condition of continuity of temperature and of velocity (see [0], [0]), shear stress jump condition, 

proposed by Silva and de Lemos (2013), and the local thermal equilibrium are assumed: 
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where *

i  represents the apparent viscosity of the fluid at the interface, 
iDu  is the Darcy velocity component 

parallel to the interface and β an adjustable coefficient which accounts for stress jump at the interface. 
The shear stress jump condition is applied at interface between porous medium and clear fluid to have a matching 

of diffusion fluxes across the interface.  
Note that by making the flow behavior index, n, equal to one and the fluid consistency index, m, equal to the 

dynamic viscosity, µ, in the Eqs. (6) and (13), the apparent viscosities presented in Eq. (11) resumes its original form, 
first proposed by Ochoa-Tapia and Whitaker (1995a-b). 

In Hy  , the symmetry condition has been applied: 
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2.4 Dimensionless Variables 
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where Tw is the temperature at the wall and q is the uniform heat flux imposed at the lower plate. 
 

2.5 Dimensionless Governing Equations 

 
For a fully developed region of the channel with a uniform wall heat flux, the first law of thermodynamics gives: 
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where the mean flow velocity is defined as: 
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The Nusselt number for this problem can then be defined as: 
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Substituting the apparent viscosities (Eq. 6) and the dimensionless variables (Eq. (15)) in the Eqs. (1) to (5), we 

obtain: 
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where R is the thermal conductivity ratio and Da is the Darcy number. 
 

2.6 Dimensionless Boundary Conditions 

 
Applying the apparent viscosities (Eqs. (6), (13)) and the dimensionless variables (Eq. (15)) in the boundary 

conditions – Eqs. (9) – (14), we obtain: 
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At symmetry, 1Y : 
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2.7 Velocity Distribution in the Channel 
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The dimensionless velocity distribution in the channel is obtained through the solutions of the dimensionless 
momentum equations, Eqs. (21) and (23), and utilizing the boundary conditions given by Eqs. (25), (26) and (30) (more 
details can be found in Silva and de Lemos (2013)): 
 

Be
ee

ueB
e

ee

ueB
u AY

AA

i
A

AY
AA

i
A

















































































 





22

2

22

2 11
       for        

2
10 Y       (31) 

 

  in
nn

n

uY
n

nu 





























1
1

1
2
1

1
                                       for        1

2
1

Y       (32) 

 
where 

 

2
1

1
1

1

Dan
A

n










 , 
 

 
n
n

n
n

DaB




 1

2
1



, 











































22

2

1

1

AA

i
A

ee

ueB
c , 






















 22

2

2

1

AA

i
A

ee

ueB
c , 13 c  and 

n
n

i n
nuc

1

4 2
1

1













              (33) 

 
Applying the boundary condition (Eq. (28)), it is obtained: 
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The ui, is the velocity at interface between porous medium and clear fluid, obtained from the transcendental Eq. (34) 

by Newton's method. 
 

2.8 Temperature Distribution in the Channel 

 

The dimensionless temperature in the porous medium (
2
10 Y ) is obtained by the integrating the dimensionless 

energy equation, Eq. (22), and utilizing the boundary conditions given by Eqs. (25), (27) and (30): 
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where  CFPM uuu   is the mean flow velocity in the channel, given by: 
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The dimensionless temperature in the clear fluid ( 1
2
1

Y ) is obtained by the integrating the dimensionless 

energy equation, Eq. (24), and utilizing the boundary conditions given by Eqs. (27) and (30): 
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Where the i is the temperature at interface between porous medium and clear fluid, obtained by using the boundary 

conditions given by Eq. (29): 
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The Nusselt number can found from the following compatibility condition (Bejan, 2004): 
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2.9 Nusselt Number 
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condition given by Eq (39). This results in the following equation for the Nusselt number: 
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The parameters 1  e 2  are defined as: 
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The value of 1  can then be found as: 
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The value of 2  can then be found as: 
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3. RESULTS AND DISCUSSION 

 
Table 1 shows the influence of Darcy number, Da, and the thermal conductivity ratio, R, in the fluid velocity at the 

interface, iu , in the mean flow velocity, u , in the flow temperature at the interface, i , in the mean flow temperature, 

 , and the Nusselt number for stress jump coefficient, β=0, flow behavior index n=0.6 and porosity =0.6. Note that 
increasing the Darcy number implies increased velocities, iu  and u  and temperatures i  and   which leads to an 
increase in the Nusselt number. Furthermore, it is possible to verify that the increase in thermal condutivity ratio causes 
also an increase in the Nusselt number. 

 
Table 1: Influence of Darcy number, Da, and thermal conductivity ratio, R, in the fluid flow parameters. 

 
β=0, n=0.6, =0.6 

Da R iu  u  i    Nu 

10-5 
0.5 

5.98×10-4 2.17×10-2 
0.519 0.590 1.038 

1 0.684 0.646 1.367 
1.5 0.764 0.673 1.528 

10-4 
0.5 

1.90×10-3 2.24×10-2 
0.522 0.595 1.044 

1 0.686 0.648 1.372 
1.5 0.766 0.674 1.532 

10-3 
0.5 

6.12×10-3 2.49×10-2 
0.533 0.603 1.068 

1 0.696 0.655 1.394 
1.5 0.775 0.679 1.552 

10-2 
0.5 

2.19×10-2 3.55×10-2 
0.591 0.651 1.212 

1 0.750 0.695 1.537 
1.5 0.823 0.715 1.687 

 
In Fig. (2) is presented the influence of the Darcy, Da (=K/H2), in the behavior pseudoplastic fluid flow, for a shear 

stress jump coefficient, β=0, porosity, =0.6 and thermal ratio, R=1. It can be seen that an increase in the Darcy number 
causes an increase in mass flow rate in the permeable layer, which indicates an increase in the permeability value of the 
porous structure, which propagates throughout the channel and leads to increased mass flow rate through the clear fluid. 

Figure (3) displays the distributions of the dimensionless temperature, , for pseudoplastic fluid, n=0.6, with shear 
stress jump coefficient, β=0, porosity, =0.6 and thermal ratio, R=1. This figure shows a decrease of the temperature 
with a decrease in the Darcy number. 

Figure (4) shows the influence of the Darcy number and of flow behavior index, n, on Nusselt number for β=0, 
porosity, =0.6 and thermal ratio, R=1. It can be seen that until Da=1×10-3, the higher the flow behavior index, n, the 
smaller the value of the Nusselt number. However, the growth rate of the Nusselt number is higher for n=1.4, which 
leads to an inversion in the behavior of the curve from Da=1×10-3, causing Nusselt number increases with n. It should 
be noted that we use a Nusselt number based on the half distance between the plates, which is H, while a Nusselt 
number used in Kuznetsov (1998) (which we denote by NuK) is based on 2H. Therefore, Nu=NuK/2. Moreover, the 
figure shows a good agreement between the analytical solution here presented and the analytical solution proposed by 
Kuznetsov (1998) for a Newtonian fluid. 
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Figure 2 : Effect of Darcy on velocity distribution 

 
Figure (5) displays the effect of Darcy and of porosity, , on Nusselt number for β=0, porosity, n=0.6 and thermal 

ratio, R=1. It can be seen that the influence the porosity on Nusselt number is only important for Da>1×10-3. For 
Da>1×10-3, the lower the porosity the greater the value of the Nusselt number. 
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Figure 3: Effect of Darcy on temperature distribution 

 
Figure (6) displays the dependence of the Nusselt number on the Darcy number and on the thermal conductivity 

ratio, efff kkR  , for β=0, porosity, =0.6 and thermal ratio, n=0.6. The case R>1 corresponds to the situation when 
thermal conductivity of the fluid is larger than thermal conductivity of the porous material and R<1 the inverse. As it 
can be seen, the Nussel number remains practically constant until Da=1×10-3, after this value Nusselt number increases 
with thermal conductivity ratio. Furthermore, as expected, the increase R value causes an in the Nusselt number. 
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Figure 4: Effect of Darcy and of flow behavior index, n, on Nusselt number 

 
Figure (7) depicts the dependence of the Nusselt number on the Darcy number and on the shear stress jump 

coefficient β for the boundary condition indicating jump in the shear stress at interface between porous medium and 
clear fluid. Figure (7) is computed for n=0.6, porosity, =0.6 and thermal ratio, R=1. It can be seen that the coefficient β 
have appreciable influence on Nusselt number. On the other hand, the increase of the Darcy number implies in the 
increase of the Nusselt number. 
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Figure 5: Effect of Darcy and of porosity, , on Nusselt number 
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Figure 6: Effect of Darcy and of thermal ratio, R, on Nusselt number 

 

10
-5

10
-4

10
-3

10
-2

Da

1.35

1.4

1.45

1.5

1.55

1.6

Nu

R=1, n=0.6, = 0.6
=-0.5
=0
=0.5

 
Figure 7: Effect of Darcy and of stress jump coefficient, β, on Nusselt number 

 
4. CONCLUSIONS 

 
This work presents an analytical solution for fully developed forced convection of power-law fluid in a channel 

partially filled with porous medium. Comparison of this work with the previously published results of Kuznetsov (1998) 
for the case of a Newtonian fluid has shown a good agreement. It was observed that the Nusselt number strongly 
depends of the number Darcy, Da, and of the thermal conductivity ratio, R. The new analytical solution obtained in this 
paper makes it possible to extensively investigate possibilities of enhanced heat transfer by changing values of pertinent 
parameters. It is valuable for gaining a deeper insight in understanding the transport processes at the interface between 
the porous medium and the clear fluid. 
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