
 

22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Copyright © 2013 by ABCM 

 

A NUMERICAL SOLUTION OF THE MAGNETOCONVECTION OF TWO- 
IMMISCIBLE FLUIDS INSIDE A PARALLEL-PLATE CHANNEL 

 
João A. Lima 
Bruno N.M. Silva 
PPGEM/DEM/CT/UFRN - Av. Senador Salgado Filho, sn - Lagoa Nova, Natal - RN, Brazil, 59072-970 
jalima@ufrnet.br; darker665@hotmail.com 
 
Hérico S. Paiva 
Philippe E. Medeiros 
DEM/CT/UFRN - Av. Senador Salgado Filho, sn - Lagoa Nova, Natal - RN, Brazil, 59072-970 
herico_silva@hotmail.com; philippecnrn@hotmail.com 
 
Abstract. A numerical approach for analysis of the fully developed magnetohydrodynamic stratified two-fluid flow with 
heat transfer inside an inclined parallel-plate channel is presented. In general, two incompressible, electrical 
conductors, immiscible, and newntonian fluids are allowed to simultaneously flow inside the channel in the steady-
state regime. In order to handle as many configuration as possible under a single formulation, the upper and lower 
plates can be made stationary or moving at constant velocities, and a constant magnetic field is externally applied in 
an inclined direction relative to flow development axis. The induced magnetic field in the flow direction is also 
evaluated, although its influence on flow behavior is neglected, i.e., it is considered small magnetic Reynolds number. 
Both plates are held at constant equal or unequal temperatures and thermophysical properties are taken as constant. 
In addition to Joule and viscous heating, other heat generation (source) or absorption (sink) phenomena are also 
allowed to occur inside the flow. The governing non-linear and coupled momentum, energy and induced magnetic field 
equations are solved as a system of first-order ordinary differential equations through a well-established numerical 
routine for solution of stiff two-point boundary value problems. Results are presented both in tabular and graphical 
forms for a large range of the governing parameters showing the versatility of the present approach. From the results, 
it was found that with suitable values of the ratio of depths, angle of inclination, viscosities, thermal and electrical 
conductivities, the fully developed velocity, temperature and induced magnetic fields can be radically modified. 
 
Keywords: Magnetohydrodynamic (MHD), Two-fluid immiscible flow, Stratified flow, Mixed convection, Numerical 
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1. INTRODUCTION 
 

In the last decades, a significant increase in the study and application of electrically conducting fluid flows under the 
effect of magnetic fields (MHD) in ducts and enclosures has been observed. This was mainly motivated by important 
industrial application in metallurgy, and more recently, in other technological uses such as MHD power generators and 
nuclear engineering (Davidson, 2001). Furthermore, these studies are now driven by environmental issues, inasmuch as 
use of natural energy resources has led to generation of pollution and climate changes. 

Since the early 1960’s, single-phase flow and heat transfer of electrical-conductor fluids inside channels submitted 
to magnetic fields have been extensively studied by many authors covering different aspects that influence the various 
governing mechanisms. A comprehensive review is obtained following the works of Tao (1960), Nigam and Singh 
(1960), Perlmutter and Siegel (1961), Roming (1961) and Alpher (1961). Later, studies were resumed taking into 
account more physical effects, such as variable transport properties (Klemp et al., 1990; Shahai, 1990; Setayesh and 
Sahai, 1990; Attia and Kotb, 1996; Attia, 1999; Attia, 2006), ion slip (Attia and Aboul-Hassan, 2003), and Hall 
interaction (Attia, 1998; Attia and Aboul-Hassan, 2003), among others. 

In turn, due to the petroleum industry interest, stratified flow of two immiscible liquids has been studied, both 
theoretical and experimentally. The interest in these problems stems from the possibility of reducing the power required 
to pump oil in a pipeline by suitable addition of water, for example. In addition, when considering liquid metals as heat 
transfer agents or as working fluids, it was found that the power requirement could be further reduced. Shail (1973), by 
studying the problem of fully-developed two-fluid flow in a horizontal channel and considering a layer of non-
conducting fluid overlying a conducting one, predicted the increase in the flow rate for suitable values of some 
governing parameters. Later, Lohrasbi and Sahai (1988) extended the problem by including heat transfer in the analysis. 
Malashetty and Leela (1991) and Malashetty and Leela (1992) assumed the fluid in both regions to be electrically 
conducting and studied the heat and fluid flow for short and open circuit cases, respectively. 

All these studies had limited their attention to the MHD two-fluid flow and heat transfer in horizontal channels. On 
the other hand, since some applications are closer to inclined geometries, several works have been reported on literature 
considering this possibility. Motivated by the works of Shail (1973) and Lohrasbi and Sahai (1988), in which only one 
fluid is electrical conductor, Malashetty and Umavathi (1997) employed the regular perturbation method to find 
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approximated solutions for the mixed magnetoconvection of the two-immiscible fluids in an inclined channel. To apply 
the method, they studied situations where the product of Prandtl and Eckert numbers (the perturbation parameter) was 
very small. Later on, Malashetty et al. (2001a) and Malashetty et al.(2001b) solved the same problem, but considered 
both fluids electrical conductors, because in the high temperature environment of a MHD generator both fluid are 
expected to be electrically conducting. 

The limiting case of vertical channels was further analyzed by Umavathi et al. (2005), who studied the mixed 
convection of two immiscible, electrically conducting fluids in the presence of an applied electric field parallel to 
gravity and a magnetic field normal to gravity. In addition to Joule and viscous dissipation, they also took into account 
heat generation or heat absorption in both flow regions. Later, Malashetty et al. (2006) studied the same configuration, 
but considering only one region filled with an electrically conducting fluid. 

Influence of moving plates and inclined magnetic fields on flow and heat transfer characteristics has been recently 
studied for the forced two-phase immiscible flow in inclined channels by Umavathi et al. (2010) and Zivojin et al. 
(2010). Umavathi et al. (2010), by considering only an electrically conducting fluid and that the upper plate moves with 
constant velocity, studied the mixed convection employing the approximate regular perturbation method. Zivojin et al. 
(2010) extended this problem by considering both fluids were electrically conductors and both plates moves with 
constant but different velocities. More recently, Nikodijevic et al. (2011) published a similar work for horizontal 
channels, but fixed the lower plate and considered only one fluid as electrical conductor. Analytical solutions were 
obtained for velocity, temperature and induced magnetic fields for those two last works. 

The main goal of this short introduction was to show how important features on magnetoconvection of two-
immiscible fluid inside channels have been gradually incorporated along the years. Where possible, it was showed that 
some analytical solutions were obtained; however, when taking into account more physical effects, equations became 
strongly coupled and non-linear so that only approximate analytical results has been presented by some authors, by 
considering the limiting case of some dimensionless parameters. Therefore, the aim of the present work is to illustrate 
an efficient numerical approach for solution of the fully-developed magnetohydrodynamic two-fluid immiscible flow 
with heat transfer in inclined channels that can take into account several other physical aspects in a single methodology 
(one or two electrically conducting fluids; horizontal, vertical, and inclined channels; flow in porous layers; heat 
generation or absorption; forced, free or mixed convection, among others effects). 
 
2. MATHEMATICAL FORMULATION 
 

The physical configuration of the problem is sketched on Fig. 1. It consists of two inclined parallel plates that are 
infinitely extended in X and Z directions, and inclined by an angle φ to the horizontal. The regions delimited by  
0 ≤ y ≤ h1 and -h2 ≤ y ≤ 0 are named Regions I and II, respectively. These plates are held at constant temperatures, 
Tw1 ≥ Tw2. The upper and lower plates are allowed to move with constant velocities Uw1 e Uw2, respectively. Fluids 
flowing in Regions I and II are also driven by a common constant pressure gradient and have different densities ρi, 
viscosities µi, electrical conductivities σi, magnetic permeability µei, and thermal conductivities ki. 

A constant magnetic field of strength B0 is applied in a direction that forms an angle β to the Y axis. Due to the fluid 
motion, an induced magnetic field of strength Bx along the flow direction is generated. In this case, the total magnetic 

field can be decomposed into the applied and the induced parts, ( )2
0 0 0( ) 1x xB B B B y B i B jλ λ= + = + − +

� � � � �

, where, 

λ = cos β. Despite this induced magnetic field be small, 0xB B
� �

≪ , not influencing the flow field (the small magnetic 

Reynolds number hypothesis), it is here evaluated to show its linkage with the flow field. Hall and ion-slip effects, 
which introduce additional spatial complexities to the problem, are neglected. 

 

 
 

Figure 1. Physical configuration 
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Additionally, flow and heat transfer of viscous fluids through permeable-walled passages is very important in many 
branches of engineering, e.g., permeable-walled ducts in heat exchangers, transpiration cooling of gas turbine blades, 
porous-walled reactors (Malashetty et al., 2004). Therefore, in the present formulation it is allowed that one, or both 
regions, be homogeneous and isotropic porous media, with permeability kpi, represented by a Darcian dissipation model. 
Fluid within the porous medium saturates the solid matrix and both are in local thermodynamic equilibrium. All 
properties are constant, except for the buoyancy term, since mixed convection is also analyzed by taking the Overbeck-
Boussinesq approximation. In addition to viscous and Joule heating, other effects of temperature-dependent heat 
generation or absorption (due to exothermic and endothermic  reactions, for example) are explicitly taken into account 
through coefficients qi. 

Under these suppositions, the dimensionless governing equations for the laminar, fully developed flow and heat 
transfer are written for phase i as: 

 
2

2 2 2 2
2

sin ( ) 0
Re

i
i i z i i i

d u Gr
mh P rbh m Ha E u u

dy
θ φ λ λ ε− + + − + − =  (1) 

 
22

2 2 2 2
2

( ) 0i c i
i i i i i i

d k du
Ec Pr Ha Ez u u Q

m dydy

θ λ ε θ
  
 + + + + + = 
   

 (2) 

 
2

2
0xi i

e
d B du

s hm Rm
dydy

λ+ =  (3) 

 
Subjected to the following boundary and interface conditions: 
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Equations (4.a) and (4.j) are the wall non-slip condition, Eqs. (4.b) and (4.k) are the isothermal conditions at the 

upper and lower plates, respectively, Eqs. (4.d-i) indicate the continuity of flow, heat transfer and magnetic fields at the 
interface (equal velocities, temperatures, magnetic field, interfacial flow and magnetic tensions, and heat fluxes). 
Equations (4.c) and (4.h) are the prescribed magnetic field on each plate. 

To make equations non-dimensional, the dimensionless groups described below were used. Re, Pr, Gr, Ec, Ha and 
Rm are the dimensionless Reynolds, Prandtl, Grashof, Eckert, Hartmann and magnetic Reyndols numbers, respectively. 
Asterisks were dropped for simplicity and, for the Region I, coefficients b, m, r, h, kc, kp, s and me are made unitary. 
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Now, in order to map all fluid regions in a single numerical domain [0,1], the procedure employed by Van Gorder et 

al. (2012) to map Region II from [-1,0] to [0,1] was adopted. To do this, functions 2 2ˆ ( ) ( )u y u y= − , 2 2
ˆ ( ) ( )y yθ θ= −  and 

2 2
ˆ ( ) ( )x xB y B y= −  are defined, so that Eqs.(1-4) for this new domain are rewritten as:  

 
2

2 21
1 1 1 1 12
sin ( ) 0

Re z
d u Gr

P Ha E u u
dy

θ φ λ λ ε− + + − + − =   (6) 
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2 2 2 21 1
1 1 1 1 1 12

( ) 0
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   
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The boundary conditions for the new domain [0,1] now become: 
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3. SOLUTION METHODOLOGY 

 
Due to presence of buoyancy force, Ohmic and viscous dissipations effects and porosity of the medium, the 

governing equations are coupled and non-linear, making difficult to find analytical solutions. In the present work, Eqs. 
(6) to (11), subjected to boundary conditions, Eqs. (12), are solved as a coupled system of first-order ordinary 
differential equations through a well-established numerical routine for solution of stiff two-point boundary value 
problems. The BVPFD routine (IMSL, 2006) solves a parameterized system of ordinary differential equations with 
boundary conditions at two or more points, using a variable order, variable step size finite difference method with 
deferred corrections. The resulting nonlinear algebraic system is solved by Newton’s method with step control. The 
linearized system of equations is solved by a special form of Gauss elimination that preserves the sparseness. This 
routine, which provides an automatic control of the relative error, handles problems in the form: 

 

' [ , ( )] , [ , ]Tf y y y a bγ γ= ∈   (13)  

 
with boundary conditions: 

 

[ ( ), ( )] 0g a bγ γ =   (14)  
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To write the governing equations in this form, they must be firstly transformed to a system of first order differential 
equations. The following correspondence between vector γ  and the governing variables is firstly established.  

 

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 2 1 2
1 1 2 2 1 2

      [ ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ]
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Then, the original system of six second-order differential equations is transformed to a system of twelve first-order 

differential equations (vector, 'γ ), as: 

 

1
2

d

dy

γ γ=   (16.a)  

 

2 22
3 1 1 1 1sin ( )

Re z
d Gr

P Ha E
dy

γ γ φ λ γ λ ε γ= − + + +   (16.b)  

 

3
4

d

dy

γ γ=   (16.c)  

 

2 2 2 2 24
2 '1 1 1 1 1 3( )

d
Ec Pr Ha Ez Q

dy

γ γ γ λ ε γ γ = − + + − +    (16.d)  

 

5
6

d

dy

γ γ=   (16.e)  

 

2 2 2 26
7 2 5 2 5sin ( )

Re z
d Gr

mh P bmr h Ha E
dy

γ γ φ λ γ λ ε γ= − + + +   (16.f)  

 

7
8

d

dy

γ γ=   (16.g)  

 

2 2 2 2 28
6 2 5 2 5 2 7( )c

z
d k

Ec Pr Ha E Q
dy m

γ γ γ λ ε γ γ = − + + + +    (16.h)  

 

9
10

d

dy

γ γ=   (16.i)  

 

10
1 2

d
Rm

dy

γ λ γ= −   (16.j)  

 

11
12

d

dy

γ γ=   (16.k)  

 

12
1 6e

d
shm Rm

dy

γ λ γ=   (16.l)  

 
Subjected to left (y = 0) and right (y = 1) boundary conditions given by: 
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4. RESULTS AND DISCUSSION 
 
Numerical results are presented, illustrating the behavior of flow, magnetic and heat transfer fields for various 

values of the governing dimensionless parameters. The resulting first order system, Eqs. (16,17), was numerically 
implemented in a Fortran 90 language code and solved by routine BVPFD for a relative error target of 10-10, i.e., ten 
digits is the requirement for convergence of all twelve potentials in any transversal coordinate, y. These coordinates, 
initially set as a uniform mesh, are automatically changed by the routine, according to the problem  requirements, to 
make the local error approximately the same size everywhere. 

Results obtained with the present numerical approach are compared with some selected previous analytical and 
approximate numerical results aimed at to show the versatility of the present approach in handling different physical 
possibilities. Twenty four dimensionless parameters must be informed as input, namely: P, Gr, Re, Ez, φ, Ha1, ε1, Ec, 
Pr, m, h, r, b, s, kc, kp, Q1, Q2, uw1, uw2, θw, λ, me and Rm1. Two additional parameters, Ha2 and ε2, are obtained as 
function of the previous ones according to Eqs. (9) and (10), or set to a value for situations where Ha1 = 0 and/or ε1 = 0. 

Figures 2 and 3 bring comparisons with the analytical results of Malashetty and Leela (1992) for the forced 
convection of two immiscible and electric conducting fluids inside a horizontal channel with fixed plates. The following 
set of parameters were employed: P = -2; Gr = 0; Re = 1; Ez = -1; φ = 0; Ha1 = 2, 10, 20; ε1 = 0; Ec = 1; Pr = 1; 
m = 0.333; h = 0.1; r = 0; b = 0; s = 0.1, 2, 3 (Ha2 = 0.1632, 0.8161, 1.6322); kc = 1; kp = 0 (ε2 = 0); Q1 = Q2 = 0; 
uw1 = uw2 = 0; θw = 0; λ = 1; me = 1; Rm1 = 0. Malashetty and Leela (1992) used different scales to make temperature 

dimensionless, so that their dimensionless temperature fields are related to the present ones through ( )* Pri i Ecθ θ= . 

Figures 2.a and 2.b show the behavior of velocity and temperature fields, respectively, as Hartmann number, Ha1,  is 
increased from 2 to 20 through 10, for electrical conductivity ratio, s, is fixed to 2. Figures 3.a and 3.b show the 
behavior of velocity and temperature fields, respectively, as ratio of electrical conductivity is increased from 0.1 to 3, 
for Hartmann number, Ha1 = 10.  

 

  

Figure 2. Profiles of (a) velocity and( b) temperature fields, for different Hartmann numbers. 
 

  

Figure 3. Profiles of (a) velocity and (b) temperature fields, for different electrical conductivity ratios. 
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As verified by Malashetty and Leela (1992), since the electrical load parameter is negative, Ez = -1 (open circuited), 
the effect of the Lorentz force is to accelerate the flow (an electromagnetic pump) and increase the temperature inside 
the channel, in clear contrast with the short circuit case, where the electromagnetic force retards the flow and decreases 
the heat transfer. In turn, the effect of varying the electrical conductivity ratio, s, is more pronounced in the temperature 
field than in the velocity field, especially in region II. By increasing the electrical conductivity ratio, the temperature is 
also increased, because more energy is added by Joule heating.  

Figures 4 bring comparisons with the approximate results of Malashetty et al. (2001b), who employed the regular 
perturbation method to study the mixed convection of two immiscible and electric conducting fluids inside a inclined 
channel with stationary plates. The following dimensionless parameters were employed: P = -5; Gr = 5; Re = 5; Ez = 0; 
φ = 0, 30, 45, 75; Ha1 = 2; ε1 = 0; Ec = 10-5; Pr = 1; m = 0.5; h = 1; r = 1.5; b = 1; s = 0.1, 0.33, 1, 2 (Ha2 ≅ 0.45, 0.81, 
1.41, 2); kc = 1; kp = 0 (ε2 = 0); Q1 = Q2 = 0; uw1 = uw2 = 0; θw = 1; λ = 1; me = 1; Rm1 = 0. 

Figures 4.a and 4.b show the behavior of velocity field as function of the channel angle of inclination and electrical 
conductivity ratio, respectively. In the first figure, the electrical conductivity ratio is fixed to 2 and the angle of 
inclination is allowed to vary from 0o to 75o through 30o and 45 o. In Figure 4.b, the angle of inclination is set to 30o 
while the electrical conductivity ratio varies from 0.1 to 2 through 0.33 and 1.  

 

  

Figure 4. Velocity profiles for different (a) channel inclinations, and (b) electrical conductivity ratios. 
 

Results are in good agreement with the approximate results of Malashetty et al. (2001b), except for the velocity 
profiles for large values of channel inclination, where a slight discrepancy is observed. This difference is possibly due 
to some error in the analytical expressions employed to generate the approximate solution, or introduced by the 
approximate method itself, even for small value of the product Ec.Pr. 

Now, although the study on flow and heat transfer in porous channels does not directly relate to 
magnetohydrodynamics, the porous Brinkman terms in the momentum and energy equations in the former closely 
resemble the Lorentz force and the Joule dissipation effects in the latter. Thus, since the present formulation also allows 
for analysis of this kind of physics, comparisons with the results presented by Malashetty et al. (2004) are shown above. 
They studied the two-fluid flow and heat transfer in an inclined channel containing a porous top layer and a non-porous 
bottom layer through regular perturbation method, valid only for small values of a perturbation parameter, which in this 
case was chosen the product Ec.Pr. 

Figures 5 illustrates the effects of the buoyancy force, channel inclination, and height and viscosity ratios on flow 
field behavior, for two values of medium porosity. The results were obtained using the following set of parameters: 
P = -5; Gr = 5, 15, 25; Re = 5; Ez = 0; φ = 0, 30, 60, 90; Ha1 = 0; ε1 = 5, 20; Ec = 10-5; Pr = 1; m = 0.1, 1, 2;  
h = 0.1, 1, 2; r = 1.5; b = 1; s = 0 (Ha2 = 0); kc = 1; kp = 0 (ε2 = 0); Q1 = Q2 = 0; uw1 = uw2 = 0; θw = 1; λ = 1; me = 1; 
Rm1 = 0. For reproduction of the results presented in Figs. (5a-c), the viscosity ratio was set to m = 1, instead of m = 0.5 
as mistakenly described by Malashetty et al. (2004). This observation apart, the present results match the approximate 
results of Malashetty et al. (2004), although slightly differences are observed in Fig. (5c) in the non-porous layer, for 
large values of channel height ratio (h = 2). If no other error is present in the analysis, this behavior is probably due to 
the inadequacy of the regular perturbation method when layer height ratio is increased. 

Finally, as one can easily see, for the flow and temperature fields the effect of increasing the porosity parameter, ε1, 
is the same as increasing the Hartmann number in a electrically conductor fluid, i.e., to retard (and flat) the velocity 
profile and increase the heat generation. From the governing equations, the porosity parameter can be interpreted as an 

equivalent Hartmann number, ( )22
1 1Haε λ= . 
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Figure 5. Velocity profiles for different top layer porosity and (a) Grashoff number, (b) channel inclination, 
(c) layer height ratio, and (d) fluid viscosity ratio. 

 

Figures 6 and 7 illustrate comparisons with the results of Umavathi et al. (2005), who also employed the regular 
perturbation method, and the finite difference method for larger values of the product Ec.Pr, to study the mixed 
convection in a vertical channel of two immiscible and electric conducting fluids. In addition to Joule and viscous 
dissipation, heat source/sink possibilities are allowed to occur through appropriate choice of parameters Q1 and Q2. The 
following set of parameters were employed: P = -5; Gr = 5; Re = 5; Ez = -1, 0, 1; φ = 90o; Ha1 = 4; ε1 = 0; 
Ec = 10-5, 0.1, 0.5, 1; Pr = 1; m = 1; h = 1; r = 1; b = 1; s = 2 (Ha2 = 5.6569); kc = 1; kp = 0 (ε2 = 0); 
Q1 = Q2 = -10, -5, -0.001, 0.001, 1, 2, 4; uw1 = uw2 = 0; θw = 1; λ = 1; me = 1; Rm1 = 0. 

Figures 6.a and 6.b show the behavior of velocity and temperature fields, respectively, as function of the electrical 
load factor, Ez, and Eckert number, Ec, for heat generation case (Q1 = Q2 = 1) and Ha1 = 4. Results are in agreement for 
both potentials, except for the pair of positive electrical load factor (Ez = 1) and large Eckert number (Ec = 1). For 
increasing Eckert number, instabilities in the numerical computation begin to occur at approximately 0.815 and the 
ODE system seems to become extremely stiff or singular, although the numerical results presented by Umavathi et al. 
(2005) do not show this behavior. For values Eckert larger then 0.82, stability of the numerical computational is 
recovered, but flow and heat transfer behaviors are significantly modified relative to low Eckert numbers. In order to 
verify this discrepancy, other numerical platform was employed for this specific set of parameters. The same instability 
behavior was also verified, so it is here believed that the results presented by Umavathi et al. (2005) are probably not 
correct for Ec = 1. 

Figures 7.a and 7.b illustrate the behavior of velocity field for heat generation (Q1 = Q2 = 0.001, 2, 4) and absorption 
(Q1 = Q2 = -0.001, -5, -10) situations, respectively, as function of the electrical load factor, Ez. Results were computed 
for Ha1 = 4, for the heat generation case, and Ha1 = 1, for the heat absorption one, maintaining Ec = 0.1 in both 
situations. As it would be expected, flow behavior is markedly altered by the choice of heat source/sink parameter. For 
the heat generation situation, it is interesting to note that an increase in the heat generation parameter from 0.001 to 2 
increases the velocity field, while an increase from 2 to 4 leads to an opposite effect. Although not shown, this behavior 
is also present in the temperature field. 
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Figure 6. Profiles of (a) velocity and (b) temperature fields, for different pairs 
of Eckert number, and electrical load factor. Heat generation case. 

 

  

Figure 7. Velocity profiles for different electrical load factors, Ez. (a) heat generation and (b) heat absorption. 
 

Attention is now directed to the influence of moving plates on flow and heat transfer characteristics of two-phase 
immiscible magnetohydrodynamic fluid flow. Mixed convection in an inclined channel with the top plate moving with 
constant velocity was studied by Umavathi et al. (2010) through regular perturbation method. Only the fluid on the 
bottom side of the channel was electrically conductor. By its turn, Zivojin et al. (2010) studied, analytically, the forced 
convection of two-immiscible electrically conductor fluids in a horizontal channel where both plates are allowed to 
move with constant velocity and opposite directions. Since they considered inclined magnetic field relative to the 
transversal y axis, the induced magnetic field on flow direction, x, was also evaluated. 

Figures 8 bring comparisons between the present results for the velocity and temperature fields with the results of 
Umavathi et al. (2010), illustrating the influence of Grashof number (Fig. 8.a), channel inclination (Fig. 8.b) and 
thermal conductivity ratio (Fig. 8.c) on flow field, and of thermal conductivity ratio on the temperature field. The 
following dimensionless set was employed: P = -5; Gr = 5, 10, 15, 20; Re = 1; Ez = 0; φ = 0, 30, 45, 90o; Ha1 = 0; 
ε1 = 0; Ec = 0.01; Pr = 0.7; m = 1; h = 1; r = 1; b = 1; Ha2 = 2; kc = 0.667, 1, 2, 10; kp = 0 (ε2 = 0); Q1 = Q2 = 0; uw1 = 1; 
uw2 = 0; θw = 1; λ = 1; me = 1; Rm1 = 0. Note that, since only the fluid in Region II is electrically conductor, Ha1 = 0, 
and Ha2 is set to a specific value (in the present work, Ha2 = 2), regardless the value used for the electrical conductivity 
ratio, s. 
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Figure 8. Velocity profiles as function of (a) Grashof number, (b) channel inclination, and 
(c) thermal conductivity ratio. (d) Temperature profile as function of the thermal conductivity ratio. 

 

The expected behavior of the velocity field with Grashof number and channel inclination is naturally predicted by 
the present approach, the results of which match those obtained by Umavathi et al. (2010) through the regular 
perturbation approximate method. As the Grashof number and the inclination angle increase there is an enhancement of 
flow and heat transfer rates inside the channel, since the buoyancy forces are proportional to these parameters. These 
results confirm the possible mistakes observed on the results of Malashetty et al. (2001b), Fig. 4a. Additionally, an 
increase in the thermal conductivity ratio increases the velocity and, more markedly, the temperature field.  

Figures 9.a and 9.b bring comparisons for the velocity and temperature fields with the results of Zivojin et al. 
(2010), illustrating the influence of the inclination of the magnetic field on these potentials. Figures 10.a and 10.b show 
the influence of the inclination of the magnetic field and the Hartmann number on the induced magnetic field, 
respectively. In order to make the comparisons, the following dimensionless groups were employed: P = -3.5; Gr = 0; 
Re = 1; Ez = -1, 0, 1; φ = 0; Ha1 = 1, 2, 3; ε1 = 0; Ec = 1; Pr = 1; m = 0.66; h = 1; r = 1; b = 1; s = 37.9 (Ha2 = 5, 10, 15); 
kc = 0.06; kp = 0 (ε2 = 0); Q1 = Q2 = 0; uw1 = 1; uw2 = -1; θw = 1; λ = 0.5, 0.75, 1; me = 1; Rm1 = 0.8x10-9. Zivojin et al. 
(2010) used different scales to make the temperature fields dimensionless, so their dimensionless temperature fields are 

related to the present ones through ( ) ( )*
1 1 1 PrEcθ θ= −  and ( )*

2 2 Prcm k Ecθ θ= . 

The present results match the analytical solutions obtained by Zivojin et al. (2010) for all potentials analyzed. Here, 
it is worth to verify the effect of the opposite top and bottom plates velocities on flow behavior. Figure 9.a shows that 
the point where velocity is zero is displaced from the channel center, because the viscosity ratio, m, is different from 
unity, regardless the inclination of the external magnetic field. By its turns, Figure 9.b shows a jump in the temperature 
at the interface (y = 0), which, as explained by Zivojin et al. (2010), results from their choice of the dimensionless 
groups for the temperature fields. 

As for velocity and temperature fields, results obtained for the induced magnetic field (Fig. 10.a and 10.b) match 
the analytical solutions, and illustrate the strong influence of the inclination angle of the external magnetic field and the 
Hartmann number on this potential. Since fluid in Region II is more electrically conductive (s = σ2/σ1 = 37.9), effect of 
Hartmann number is more pronounced in this region. 
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Figure 9. Profiles for (a) velocity, and (b) temperature fields for different external magnetic field inclinations. 
 

 

  

Figure 10. Induced magnetic field for different (a) external magnetic field inclination, and (b) Hartmann number. 
 

Here, it is important to mention that, although the magnetic Reynolds number, Rm1, is small (a hypothesis adopted 
in order to not take into account any disturbance of the external magnetic field), and so is the induced magnetic field, 
Bx, the general conclusions obtained under this hypothesis are also valid for higher values of the magnetic Reynolds 
number. Therefore, the study of these simpler situations can bring some basic knowhow for analysis of more 
complicated physics. 

 

5. CONCLUSIONS 
 
The results obtained, validated against analytical solutions and compared with other approximate numerical 

methods, clearly show the simplicity, efficiency and robustness of the present approach for analysis of a broad spectrum 
of problems governed by two-point boundary value ordinary differential equations, here in particular, those related to 
magnetohydrodynamic of two-immiscible flow. As demonstrated in the results section, several physical situations (with 
greater emphasis on magnetohydrodynamics) have been handled through this single procedure. Its main applicability 
lies, of course, on problem where no analytical solutions is possible, or difficult to be found. Additionally, since hybrid 
methods, such as the Generalized Integral Transform Technique (GITT), employ intensively routines for initial and 
boundary value problems (like BVPFD and IVPAG, IMSL (2006)) to solve the resulting transformed ODE systems, the 
present work serves as a physical and mathematical starting point for application of such techniques on developing two-
phase heat and fluid MHD flow inside channels (Lima and Rêgo, 2013). Therefore, the main goals of the present work 
were successfully reached, namely, to develop a basic background on magnetoconvection inside channels, and present 
part of the numerical approach employed by GITT to solve boundary value problems with emphasis on two-phase 
magnetohydrodynamics flow with heat transfer. Currently, hybrid analyses on developing two-phase flow with heat 
transfer within channels are being performed by the present research group. 
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