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Abstract. This study presents the design of a control system for a test bench used in investigations of a fin cooled by  
free convection with ambient air. This work applies the modern control theory with the state space formulation. The  
test bench is composed of a block made of aluminum, wherein a cylindrical brass fin and an electrical resistor are 
fixed. The electrical  resistor  and the aluminum block are modeled as lumped systems. The purpose of the control  
system is to maintain a constant temperature at the base of the fin, that is, the point where it emanates from the  
aluminum block, by manipulating the heat rate generated by the electrical resistance. The control system is designed  
by using an optimum Linear-quadratic regulator and a Luenberger state observer. The control system is implemented  
in Matlab© and simulated with the Computer-Aided Control System Design (CACSD) Simulink©. The control system  
is  compatible  with  the  National  Instruments™  modular  data  acquisition  system,  which  was  also  used  in  the  
experimental implementation of the present study.
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1. INTRODUCTION

Initial value problems with Dirichlet boundary conditions are an important class of heat transfer problems. This type  
of boundary condition, with a constant temperature, can be approximately imposed on the body surface through heat  
transfer  with  materials  undergoing  phase-change,  which  generally  involve  very  large  heat  transfer  coefficients.  
Alternatively, a system can be implemented to control the surface temperature by acting on the heat flux imposed on the 
surface. 

Thermal control systems have industrial applications in numerous fields, e.g. the food industry, chemical processes,  
power plants, automotive sectors, electronics, etc. Early in the last century, bi-metallic actuating switches were applied  
in  thermal  control  systems  (Taylor  et  al.,  1948).  Due  to  the  development  of  electronics,  the  use  of  thermistors 
(Blackburn,  1987)  surpassed  those  mechanical  control  devices  in  terms  of  both  economic  and  accuracy  criteria. 
Currently, state of the art technology involves optimum regulators and optimum observers (Kalman, 1960a; Kalman,  
1960b) in thermal control dynamic systems (Karvounis et al., 2008).

This study presents the modeling, simulation and control  of a thermal system. The thermal system presented is 
comprised of a test bench composed of an aluminum block with a cylindrical brass fin, in which an electrical resistor is 
inserted. The thermal system is modeled using lumped systems for the electrical resistance and the aluminum block, and 
by  employing  the  transient  fin  heat  transfer  equation. Values  for  the  fin  heat  transfer  coefficient  are  obtained  in 
experiments carried out on the test bench. The transient fin equation is numerically solved using the forward-time, 
centered-space (FTCS) finite difference explicit scheme, while the solution stability condition was calculated by the von 
Neumann stability analyses (Charney et al., 1950). Convergence, in the sense of Lax-Richtmyer  (Lax and Richtmyer, 
1956), inferred by theoretical analysis  is supported by the experiments. 

The model state variables are converted to dimensionless values, so that the surrounding environment temperature  
assumes a zero value and the reference temperature at the fin base assumes a unitary value. The dimensionless model is  
used to determine the control equations in state space. The Modern Control theory is characterized by expressing the 
problem in a single vector matrix differential equation. This approach has known advantages over the Classical Theory 
in Laplace state (Ogata, 2003), as it reduces the multiple input/multiple output problems to a single equation.

 The control is designed in this work with an optimum linear-quadratic regulator and a Luenberger state observer  
(Luenberger, 1979). The regulator controls the electrical resistance, while the state observer gathers information from 
two thermocouples in the test bench, in order to estimate the state variables. The numerical simulations were carried out 
within the Matlab© platform and the Computer-Aided Control System Design Simulink©. The data acquisition module 
used in the test bench was procured from National Instruments™. 

Results of  numerical  simulation are  compared with the controlled experimental  bench response.  Two reference  
conditions were tested: a constant reference temperature, and a three-step reference. A good convergence between the 
results reveals an appropriate modeling of the physical problem and of the control system
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2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The test bench of this study has an aluminum block with two through-holes, wherein an electrica l resistor and a fin 
are fixed, as shown in Fig.  1. Due to the large thermal conductivity of aluminum and the low heat transfer on the 
external  surface  of  the  aluminum block,  it  is  formulated  in  terms  of  a  lumped system.  Equation  (1)  presents  the 
formulation of the aluminum block.

Figure 1. The aluminum block dimensioned in millimeters

V block c p Al ρAl

dT 1

dt
= ġ (t )V g − hc Ac [T 1 (t ) − T 2(t )] − Q̇loss (t) (1)

where Vblock and Vg are the volumes of the block and of the resistor, respectively; Ac is the contact area between the block 
and the fin;  cpal and  ρal are the specific heat and density of the aluminum, respectively; and hc is the thermal contact 
conductance  coefficient  between  the  block  and  the  fin,  taken  as  a  constant  value  of  10 3 W/m2K (Ayers,  2003), 
regardless of its possible dependency on the interface heat flux.  The variable ġ is the heat generation per unit volume 
inside the electrical resistor, and Qloss is the heat loss from the aluminum block to the ambient.  In equation (1), T1 is the 
temperature of the aluminum block, while T2 is the temperature of the fin inside the aluminum block, which is also 
assumed to be uniform for the sake of simplicity. 

The fin was discretized by finite differences, so that  T2 also gives the temperature of the boundary node that is 
located at the fin base. Hence, the other n nodes along the fin surface are numbered as illustrated by figure 2. Figure 3 is 
a photograph of the test bench. The thermophysical properties used in the formulation are presented in Table 1.

Figure 2. The test bench one-dimensional mesh model with state variables.

Figure 3. The test bench
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Table 1. Nominal Material Properties at 300K ( Touloukian and Ho, 1972).

Material Properties
Aluminum 
Alloy 6061

Brass 360
0,7 Cu; 0,3 Zn

Thermal Conductivity, k (W/m.K )(1) 154,9 110
Density, ρ (kg/m3)(1) 2700 8530

Specific Heat, cp (J/kg.K)(1) 962,9 380
                           (1) reported uncertainties in these values are within 3,5%

The heat loss,  Qloss, is calculated using the McAdams correlation (McAdams, 1954), which yields in a non-linear 
equation that  relates  the heat  loss to the state  T1  and the surrounding environment temperature  T∞,  in the form of 
equation (2a),  where  Ablock is  the surface  area of the block that  exchanges  heat  with the surrounding environment. 
Equation (2a) is then linearized in terms of the reference control set point temperature Tref , as shown in Eq. (2b).

 

Q̇loss = 1,36 Ablock (T 1 − T ∞)
5 /4 (2a)

Q̇loss = 1,36 Ablock (T 1 − T ∞) (T ref − T∞)
1/ 4 (2b)

 The portion of the fin located inside the aluminum block was all considered in a uniform temperature  T2(t). The 
lumped formulation for that region of the fin is given Eq. (3): 

V b c ρ
dT 2 (t)

dt
= hc Ac [T 1 (t) − T 2(t)] − qb (t) A (3)

where qb is the heat conducted to the brass fin at its base, Vb is the volume of the fin inside the aluminum block, A is the 
cross-section area of the fin, while c and ρ are the specific heat  and density of the brass, respectively. 

The region of the fin that exchanges heat with the surrounding environment by free convection is modeled in terms 
of the classical transient fin equation, where partial lumping is used in the fin cross section, as given by Eq. (4). The 
boundary condition at the fin base is the heat flux qb(t) that is transferred from the fin region inside the aluminum block, 
as in Eq. (4). At the fin tip, convective heat transfer is assumed with the same heat transfer coefficient of the lateral fin 
surface, h, as in Eq. (5). The mathematical formulation for the fin is then given by

1
α

∂T
∂ t

=
∂

2 T
∂ x2

+
hP
kA

[T∞ − T (x , t )] ( for : 0 < x < L , t > 0) (4)

−k
∂T
∂ x

= qb (t ) ( for : x = 0) (5)

k
∂T
∂ x

+ h T = h T∞ ( for : x = L) (6)

where P and A are the perimeter and area of the fin cross section respectively. The length L of the fin portion outside the 
aluminum block is about 150 millimeters, and the thermal diffusivity is α = ρcp/k. The density ρ, the specific heat cp, and 
the thermal conductivity k of brass can be found in Tab 1. The heat transfer coefficient h is 1296 W/m2K. Its uncertainty 
is  within  9,5%,  obtained  experimentally  for  this  test  bench  at  steady  state  conditions,  with  a  constant  reference 
temperature of 155 ºC at the fin base, and an environment temperature of 25 ºC.

The mathematical modeling for the problem is provided by two ordinary differential equations for the block and the 
fin inside the block, and one partial differential equation for the fin outside the block. These equations are subjected to  
initial conditions that involve equilibrium with the surrounding medium. That is, at time t = 0, the block and the fin are 
at the uniform temperature T∞.

By using the second order space-center finite-difference explicit scheme of Eq. (7), the partial differential equation  
(4) reduces to a system of n ordinary differential equations for each of the finite-difference nodes. These equations were 
discretized explicitly in time. 

∂
2 T (x0)

∂ x2
≈

T (x0+Δ x) − 2T (x0)+ T (x0−Δ x)

Δ x2
(7)

For the boundary nodes, a central difference with a fictitious node was used for the computation of the temperature  
gradients at the surfaces, so that only the temperatures appear as state variables for the control problem state in Eq. (8).
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∂T (x0)

∂ x
≈

T (x0+Δ x) − T (x0−Δ x)

2 Δ x
(8)

Von Neumann's Stability Analysis (Charney et al., 1950) is carried out, so that the explicit finite difference system 
of equations is stable if the condition in Eq. (9) is satisfied:

Δ t ⩽
2

α(hP
KA

+
3

Δ x2 )
(9)

3. MODERN CONTROL DESIGN 

While conventional control theory is based on the input-output relationship, modern control theory is based on a 
convenient description of system equations in a single first-order vector-matrix differential  equation (Ogata,  2003).  
Equations (10) and (11) stands for the system dynamics and the observable output dynamics, respectively. The system  
of equations below is the classical representation of a linear control system in space-state.

ẋ = A x + B u (10)

y = C x + D u (11)

where, for the present case, x is the state vector composed of the dimensionless temperatures at the block, fin base and 
fin nodes; u is the input signal of the electrical resistance in Watts, which is the control; and y is the output signal from a 
thermocouple located at the fin base. The matrix vectors  A,  B  and  C, and the scalar D represent the system’s and 
instruments’ dynamics. The matrices A and B result from the discretization of the formulation of the physical problem, 
as described above. 

For convenience in the analysis, the formulation of the physical problem was written in dimensionless form, with 
the state variables given in Eq. (12):

xi = θi =
T i − T ∞

T ref − T ∞
(12)

The only observable output in the test bench is considered to be the temperature at the fin base. Therefore,  by  
neglecting the sensor dynamics,  the line vector  C is  [0 1 0 0 … 0] and the scalar D equals to zero.  A proportional 
control is assumed, with the gain k for the input signal u as a function of the estimated state x̂, so that,

u ( t) = − k x̂ (t) (13)

The error of this estimation is given by

e (t) = x (t) − x̂ (t) (14)

By rewriting Eq. (10) in terms of the estimated state x̂, we obtain:

̂̇x = A x̂ + B u (15)

Subtracting Eq. (15) from Eq.(10) results in:

ė = A x − A x̂ = A e (16) 

Equation (16) shows that the error variation is not dependent on the control signal. Hence, if A is unstable, the error 
grows unlimited. In order to mitigate this possible instability a correction term L is introduced, as applied in Eq. (17) 
and (18). The term L is known as the Luenberger state observer (Luenberger, 1979).

ẋ = A x̂ + B u + L (y − ŷ) (17)

ŷ = C x̂ (18)
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By substituting Eq. (17) into Eq.(16a) we obtain

ė = Ax − A x̂ − L (Cx − C x̂) = (A − LC)e (19)

And, by using equations (13) and (14), equation (10) becomes:

ẋ = A x − BK x̂ = (A − BK) x + BK e (20)

According to the Principle of Separation of Estimation and Control (Joseph and Tou, 1961; Potter, 1964), the closed-
loop control stated by Eqs. (19) and (20) will be stable if the regulator dynamic (A – BK) is stable; and, the estimator 
dynamics (A – LC) is also stable. Figure (4) illustrates this principle in a control system.

Figure 4. Close-loop control system with proportional gain and Luenberger observer.

When designing the control system, the gain L and K must be calculated. To determine the optimal control gain as 
in a quadratic optimal control problem (Kalman, 1960a), the objective function in Eq. (21) is minimized:   

J = ∫
0

∞

(x ⃰ Q x + u ⃰ R u ) dt (21)

where the weight matrices Q and R represent the relative importance of the error and the energy expenses in the control. 
The notation  ⃰  on the state variables and control denotes the matrix conjugate transpose.  

The order of magnitude for the values of those weights can be found with Bryson's rule (Bryson and Ho,1975), Eq. 
(22). Although Bryson's rule generally renders good results, its application is often just the starting point of a trial-and-
error iterative design procedure aimed at obtaining desirable properties for the closed-loop system (Hespanha, 2007).  
Therefore, a small iterative correction was carried out in this study after using Bryson's rule, in order to satisfy tighter  
control specifications of the test bench application.

Qi i =
1

maximum acceptable value of x i
2

R j j =
1

maximum acceptable value of u j
2

(22)

The steps to solve the optimization problem stated in Eq. (21)  leads to an algebraic Riccati equation – ARE – that is 
shown in Eq. (23). The ARE solution P will be used in Eq. (24) to find the optimum proportional gain  K. With this 
procedure,  a  stable regulator  dynamic  (A –  BK)  is  obtained,  in  the sense  of  Lyaponov  stability  (Kalman,  1960a; 
Lyaponov, 1892).

A ⃰ P + P A − P B R−1 B ⃰ P + Q = 0 (23)

K = −R−1 B ⃰ P (24)

The  quadratic  optimal  control  problem has  strong  similarities  with  the  estimator  gain  determination  problem. 
Indeed, the poles that make the dynamic of (A – BK) stable will also make (A – LC) stable, and this property is called 
duality. The resultant eigenvalue dual problem is stated in Eq. (25).

∣s I − A + BK∣ ∣s I − A + LC∣ = 0 (25)

Aiming at the same poles of the regulator dynamic, finding L is straightforward. Equations (26) and (27) represent a 
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space-state equation of a dual problem as stated in Eq. (25).
 

ż = A ⃰ z + C ⃰ v (26)

n = B ⃰ z (27)

where v is obtained in terms of the proportional dual gain, as in Eq. (28):

v = −kd z (28)

The dual gain  kd is calculated so that the eigenvalue problem  (A* -  C*kd) has the same poles of the quadratic 
optimal control problem given by Eq. (20). Furthermore, if the problem (A* - C*kd) has the same eigenvalues of (A – 
kd*C), L is given by Eq. (29).

L = k d ⃰
(29)

The desired control set-point value must then be established. Equations (30) and (31) show the system equilibrium  
state. To maintain a constant temperature, the generation term of the electrical resistance has to compensate for the heat 
losses through convection. In  an equilibrium state  (∂x/∂t = 0),  a non-zero reference output signal  y is  related to a 
reference state x, and demands a certain reference input signal u.

ẋ = [0 ] = A x̄ + B ū (30) 

y = ȳ = C x̄ + D ū (31)

The solution of  Eq. (30) and (31) are in the form of Eq. (32) and (33), respectively. 

x̄ = F ȳ (32)

ū = N ȳ (33)

Equation (13) states an arbitrary proportional gain that leads to a convergence towards a zero signal, because the 
reference is zero. It  is desirable to achieve a non-zero set point state, therefore,  a more suitable non-zero set-point  
proportional gain can be expressed by Eq. (34) (Hespanha, 2007).

 u − ū = − K (x̂ − x̄) (34)

From Eq.(32), (33) and (34) the non-zero set-point regulator equation is given by Eq. (35).  

u = − k x̂ + (K F + N) ȳ (35)

Figure (5) shows the schematic block diagram of the closed-loop control system with a non-zero set-point.

Figure 5. The  close-loop control system
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4. RESULTS AND DISCUSSION

The control system described above is applied to regulate the temperature at the fin base. The designed control is  
tested against the numerical model and in the real test bench for various energy cost weights R, while the error cost Q is 
kept at a set constant value, calculated using Bryson's rule, for a maximum acceptable error of 1 ºC.

For the numerical tests, the set-point involved three-step input reference signals, with dimensionless values of 0.35, 
0.5 and 1.0, the reference 1.0 being related to the reference temperature of 100 ºC. Figure (6) shows the results obtained  
for the dimensionless base temperature, in numerical tests of the control system for R = 0.1, 0.2, 0.5, 1 and 1x103.. In 
this figure, the black line represents the set-point, and the color lines represent the responses of the controlled system. 
All the numerical tests are carried out considering the environment temperature of 24 ºC.

Figure (6) shows that setting a low energy weight results in a large overshoot, and requires significant time for  
convergence. Setting up the energy weight from 0.1 to 0.2 incurs in a slightly increased energy cost,  but still yields an 
overshoot which disappears for R = 0.5. Tests demonstrate that the system is very sensitive for R in the range from 0.1 
to 0.5. In fact, the response of the controlled system is practically unaffected for larger values of the energy weight R, as  
illustrated by figure below.  A good compromise between error and energy expenditure is then achieved with R = 0.5, 
due to its low overshoot and fast convergence. 

Figure 6. Model Response vs. Reference three-step input signal

Figure (7) shows the control acting upon the real test bench. Three constant reference temperatures are set for the 
experiment: 35 ºC, 50 ºC and 100 ºC. The error cost is kept constant and given by Bryson's rule and the energy cost is 
set R=1.0. This figure shows that the control system designed in the present work is capable of accurately responding to 
the set-point changes, in a stable and fast manner. Oscillations observed in the actual base temperatures can be due to  
perturbations in the environment temperature, which is considered as constant and equal to 23 ºC in the model.
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Figure 7. Model response vs. Experiment data for three reference inputs at R=1.0

5. CONCLUSION

This work deals with the control of the base temperature of a cylindrical  fin.  The formulation of the physical  
problem is presented and consists of two ordinary and one partial differential equations. The partial differential equation  
is solved by explicit finite-differences, and its stability criteria is verified by von Neumann analysis. An optimal control 
approach is applied in this work, with a formulation in terms of state variables. 

The control system is implemented in Matlab, which is compatible with the input/output system manufactured by  
National  Instruments,  also  used  in  the  experiment.  The  control  system  is  applied  to  both  simulated  and  actual  
experimental data. For both cases, the utilized approach resulted in stable behavior, with overshot and response time 
that could be appropriately tuned by the weight matrices of the objective function of the optimal control problem.
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