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Abstract. MicroElectroMechanical Systems (MEMS) are systems what are composite by electrical and mechanical 
devices which interact by means of transducers elements, so that forming one single and whole system. It’s an invasive 
microsystem, intermediator and interactive what develops its activities very efficiently and versatility. MEMS 
dispositive have been considered a future technology, used in too many areas, like, for example, mobiles, audio 
equipments and hearing aids. MEMS are a combination of microstructures, microsensors and microactuators. The 
actuators electro-mechanics are transducers that convert electrical energy into mechanical energy, been composed by 
two basic functions: the first one, one univocal function, what sets the relationship between the input signal and the 
output signal; the second function is of driver, what has de function of monitoring and force’s generation. The main 
electro-mechanic actuator used in MEMS’ devices is the Electrostatic one. The goal in this work is studying the non-
linear properties of a micro-actuator electrostatic, kind beam, into many numerical simulations (Time History, phase 
portrait, Spectrum of Frequency, Lyapunov’s exponent) are done to illustrate the micro-actuator’s dynamic behavior, 
what is shown. 
 
Keywords: MicroElectroMechanical System, Non-Linear Dynamics, Actuator. 

 
 
1. INTRODUCTION 
 

Micro electro mechanical System (MEMS) technology are linking devices in the micrometer range, i.e. less than 
1mm and greater than 1µm. These devices collect, as its name suggests, properties of microelectronics, micromechanics 
and others. These devices have been used as temperature sensors, flow, speed, sound, linear and angular motion 
actuators, and as components of complex systems, such as robots, micro pumps heat etc. (Gad-El-Hak, 2012; Rugar et 
al, 1992). 

MEMS are a technology which enables the development of smart products, increasing the computational ability of 
microelectronics with the control of micro sensors and micro actuators, thereby expanding the space of possible designs 
and applications. (Illic et al, 2000; Kenny, 2001) 

Nowadays, manufacturing processes can produce very small devices, producing electrostatic, magnetic, 
electromagnetic, thermal and pneumatic actuators, motors, valves, gears etc. all with less than 100µm in size. By the 
fact the devices are fabricated using MEMS manufacturing techniques similar to those used in the manufacture of 
integrated circuits, allowing unprecedented levels of functionality, reliability and sophistication can be placed on a 
small chip and a relatively low cost (Gad-El-Hak, 2012). 

MEMS are found in diverse applications with accelerometers for cars. In MEMS accelerometers, measure vehicle 
acceleration through the oscillation of a small device and send an electrical impulse to a microprocessor. In the fraction 
of a second prior to the accident, there is a sharp drop in vehicle velocity, acceleration, what changes the frequency of 
the devices oscillation and the response of the microprocessor is to activate the air bags. In Brazil, CONTRAN 
(Conselho Nacional de Trânsito) determined that, from the year 2014, cars must have air-bags regardless of model 
(http://veja.abril.com.br). Thus, MEMS use will probably increase next years, making important its study. 

In this work, is studied the behavior of a MEMS device, beam-type micro electrostatic actuator. This MEMS have 
been proposed by Takamatsu and Sugiura (2005) and the non-linear properties are simulated numerically demonstrating 
the dynamic behavior: stable, unstable and chaotic. Besides, an analytical study of stability is done in function of the 
system’s eigenvalues, what is achieved with the linearization of the system.  

The paper is organized as follows: in Section 2, we demonstrated the mathematical model for the micro electrostatic 
actuator in study and we discussed its linear stability. In Section 3, we discuss and include the parametric resonance 
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causing chaotic behavior in the system. In Section 4, we make the concluding remarks of this paper. In Section 5, we 
make some acknowledgements. Finally, we list out the bibliographic references 

 
2. MODEL 

 
The beam-type micro electrostatic actuator which is object of our study is presented for the model of figure 1. The 

model consists of a mass-spring system for constant k (1,31.10-8 kg/s) and mass m (1,31.10-10 kg) of a degree of freedom 
that is a beam that is also the capacitor C (1,07.10-13 F). Between the plates (electrodes) there is an applied voltage V (0) 
and the distance between them is denoted by D (2,02.10-6 m). As we’ve said, one of the plates is movable and is 
connected to the spring constant k and the other is the stationary electrode, as shown in figure 1. The damping 
coefficient, characteristic of the geometry of the object and of the environment proprieties is denoted by c (1,0.10-15 
kg/s) (Takamatsu, Sugiura, 2005).  

 
 

 
 

Figure 1: Modeling of a beam by a spring-mass system (Takamatsu, Sugiura, 2005). 
 
 

As we can see at the figure 1, e x-axis is taken along the vertical direction with positive direction upwards. Its origin 
is defined as the position of the mass for V=0. We denote the charge on the electrode for q. We will adopt the system 
parameters constant, so our system is called autonomous. 

 
2.1 Equation of motion and Stability 

 
The equation of motion of the system shown in figure 1 can be achieved by the application of Newton’s second law 

to the model and is written by:  

                                         0
2

2

=+++
CD

q
kxxcxm &&&  (1)  

 
wherex&  represents the first derivative of x with respect to time, namely: 

 

                                         
2

2

dt

xd
x

dt

dx
x =⇒≡ &&&  (2) 

 
In equation (1), the term xm&&  represents the variation of the amount of linear movement provided by the Newton's 

Second Law, xc&  the damping force due to ambience. This force is opposite to the movement being proportional to the 
velocity of the mass; kxcomes from Hooke's Law, and corresponds to the force applied by the spring on the mass, and 
as the damping force due to resistance offered by ambience, is contrary to the movement.  

The electric Field (E
r

), is  
 

                                         
q

F
E ele

r
r

=  (3) 

 

eleF
r

 is the electric force vector acting on the charge q relative to the electric field E
r

, thus we have 

 

                                         
q

F
E ele=  (4) 
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By the definition of capacitance, 
 

                                         
V

q
C =  (5) 

 
From equations (4) and (5) we have: 
 

                                         ECVFele =  (6) 

 
For a uniform electric field with equipotential surfaces of distant, the potential difference V:  
 

                                         
D

V
E −=  (7) 

 
Of (6) in (7), has: 

                                         
D

CV
F ele

2

−=  (8) 

 
Of (5) and (8) is considering we want only the electric force acting on the movable plate, we obtain (Halliday et al, 

2008): 
 

                                         
CD

q
F

DC

Cq
F eleele 2

2

2

2

−=⇒−=  (9) 

 
To demonstrate the equation (1), consider first the second Newton's law of motion, namely: 
 

                                         
dt

pd
F

r
r

=∑  (10) 

 
In our case mass m is constant, so we obtain 

                                         
2

2

dt

xd
mF

r
r

=∑  (11) 

 
In the direction of the coordinate axis x, see figure 1, we can write: 
 

                                         
2

2

dt

xd
mF =∑  (12) 

 
Replacing forces, we have 
 

                                         Ckele FFFF ++=∑  (13) 

 
as described, we have 

                                         
CD

q
Fele 2

2

−=                                                                                                   (14) 

 
is the electric force on the movable plate;  

 

                                         kxFk −=  (15) 

 
corresponds to the spring force on the mass m, and lastly 
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                                         xcFC &−=  (16) 

 
is the drag force on the medium provides the body movement. Thus, by replacing (14-16) into (13) we obtain the 
equation, which substituted in (11) gives us: 

                                         0
2

2

=+++
CD

q
kxxcxm &&&                                                                              (16) 

 
Whereas the applied voltage V is given by the combination of a DC voltage and the AC voltage given by:  
 

                                         )sin(sin NtAV =  (17) 

 
where A is the amplitude of the applied AC voltage and N the frequency. 

The equation of motion (1) was obtained by considering the constant voltage V. If this tension is a composition of a 
DC voltage with an AC signal and variables q, x, C, and D, the relationship between the applied voltage and the load 
can be obtained (Takamatsu, Sugiura, 2005):  

 

                                         )sin(
)(

0 NtAV
cD

xDq +=+  (18) 

                                          
then  

                                         0
2

)(
2

22

=++++
CD

Dxq
kxxcxm &&&  (19) 

 
We can investigate the stability of a nonlinear system through the equilibrium points according to Lyapunov 

(Lyapunov, 1966) linearizing the equation of motion. The procedure consisted in transforming the second order 
differential equation (19) into a system of two first order equations by means of the following change of variables 

 

12 xx &≡    (20) 

such that 

21 xx &&& ≡    (21) 

 

where xx ≡1 .  

Resulting 
 

),( 211 xxfx =&    (22) 

 

),(
2

)(
212

2
1

2

212 xxg
mCD

Dxq
x

m

c
x

m

k
x =+−−−=&    (23) 

 
In the system of differential equations, the stationary solution is obtained, by definition, on equilibrium points. Thus, 

the equilibrium points of the system of equations (22) and (23) can be obtained. 

Therefore, the equilibrium points ),( 1
*

21
*

11
* xxP = and ),( 2

*
22

*
12

* xxP =  are  
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2

22222
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  01
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2 =x  (25) 

and 
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  02

*
2 =x  (27)                       

                                                    
To linearize the system around the equilibrium points, must apply Taylor’s series truncated to the first order terms 

around the equilibrium points (Fielder-Ferrara, 1995). With the resulting systems, then linear, we obtain respective 
Jacobian matrices: 


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   (29) 

 
The eigenvalues of the Jacobian matrices given in (28) and (29) can be obtained by the equation: 
 

0)det( =− IJ
tt

λ    (30) 

 

where λ  is eigenvalues andI
t

is identity matrix (Monteiro, 2002). 
Have, for matrices in (28) and (29) respectively: 
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appointing in equation (31),  

φ=
m

c  (33) 
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and in equation (32), 
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m

c
 (35) 
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So that the equations (31) and (32) can be represented in terms of these new variables defined. 
 

212,1

ψφλ ±−=  (37) 
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222,1

θφλ ±−=  (38) 

 

Table 1 shows the analysis of stable equilibrium point 1
*P , therefore, made on the basis of 

12,1λ . The stability of  

2
*P according to 

22,1λ is similar. 

 
Table 1: Stability conditions in terms of 

12,1λ . 

Stability Type Fixed Point Condition 
Asymptotically stable Node (hyperbolic) 0>φ  and 20 φψ <<  

Unstable Node (hyperbolic) 0<φ  and 20 φψ <<  

Unstable Saddle (hyperbolic) 0>φ  and 2φψ >  

Unstable Focus (hyperbolic) 0<φ  and 0<ψ  

Asymptotically stable Focus (hyperbolic) 0>φ  and 0<ψ  

Stable Center (hyperbolic) 0=φ  and 0<ψ  

Unstable Hyperbolic 0<φ  and 0=ψ  

Asymptotically stable Hyperbolic 0>φ  and 0=ψ  

 
 

2.2 Nondimensional Equation 
 

Using this scale transformation for the variables: 
 

** , dxxt
t

m
t ==  (39) 

 
the nondimensionalized governing equation can be obtained,  

 
( )

( ) 0
127

sin14
2 2

22

=
+

++++
x

t
xxx

δαβγ &&&
 (40) 

 
where the notation * is omitted. Nondimensional parameters are: 

 

.
/

,,
8

27
,

2 0

0
2

2
0

km

N

V

A

V

V

kd

CV

mk

c

b

===== δαβγ  (41) 

 
γ is the damping coefficient, β is the DC voltage (the ratio to Vb that the equilibrium point disappears according to the 
bifurcation), ɑ is the amplitude of AC voltage (the ratio to DC voltage), and δ is the frequency of AC voltage.  
 
3. SIMULATIONS 

 
The simulations were performed using the non-dimensional motion equation (Eq. (40)). Figure 2 shows our 

simulations for the parameters ɑ =0.33, β = 0.78, δ =0.86 and γ=5.5, the same used by Takamatsu and Sugiura (2005).  
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Figure 2: MEMS system. (a) Time History (x1), (b)  Time History (x2), (c) Frequency Spectrum (x1), (d) Frequency Spectrum 

(x2), (e) Portrait Phase (x1,x2) and, (f) Poincare Map (x1,x2). 
 

The coordinate of the equilibrium point of the system are x1=0.27451, x2=0.0, and the eigenvalues are λ1= -0.0836; 
λ2= -10.9164. The eigenvalues λ1,2 indicates that the micro electrostatic actuator is stable and the Figure 3 shows the 
dynamics of Lyapunov exponents (λ1=-0.0688), (Wolf et al,1985) without the presence of chaotic behavior. 
 

0 10 20 30 40 50 60 70 80 90 100

-0.072

-0.07

-0.068

-0.066

-0.064

-0.062

-0.06

-0.058

-0.056
Dynamics of Lyapunov exponents

t

Ly
ap

un
ov

 e
xp

on
en

ts

 

 

λ1=-0.068835

 
 

Figure 3: Lyapunov Exponents. 
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3.1 Stability diagram 
 
Chosen numerical values for the parameters are:  ɑ =0.33 and δ =0.86, where as β and γ are varied. The Jacobian 

matrix J is:  
 

.
2

0303.1
3113.0

1

10
2















−+−= γβJ
 (41) 

 
The eigenvalues of J, will provide the conditions for stability or instability of the equilibrium points: an equilibrium 

point is asymptotically stable if all the eigenvalues have negative real part and unstable if at least one of them has 
positive real part (Guckenheimer, J. and Holmes, 1983). The stability diagram for Eq. (4) is showed in Figure 4. 
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Figure 4: Stability Diagram (•) Stable points and (*) Unstable points. 

 
 
The stability diagram is a graphical representation of a suggestive way of points, depending on two parameters β 

(damping coefficient) and γ (DC voltage), in which the system is stable or not. Figure 4 is a special case of discrete 
points and the choice of the parameter γ is because of the dampening effect on the system. The points (•) represent the 
stable points of the system and the points (*) represent unstable points. Noted in the Figure 4 that for damping zero or 
less than zero the system becomes unstable, otherwise there is the stability. 

 
3.2 Stability as a function of β 

 
In the Figure 5, are shown the points as compared to its stability parameter, that is, it is possible to see that the 

regions where the equilibrium point are stable and unstable in function of this parameter. 
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Figure 5: Stability diagram as a function of  β. 
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4.  CHAOS 
 
When a system has a parametric excitation, some parameter of the system is a modified variant with time. In this 

case, this vibration is said parametric vibration causing very high amplitudes. 
In the forced vibration, power is simply added to the system, in accordance with the resonance conditions, there is 

the system response. In such cases there is no variation in the parameters, they are constant throughout the oscillation 
process. 

In the system adopted, the forced excitation term including (sinδt) is primary resonance can occur when frequency 
of AC voltage is close to the natural frequency. Another possibility mechanism is parametric resonance caused by the 
term including (ɑcos2δt) when 2δ is twice the natural frequency. Figure 6 shows the dynamic behavior of the model (3) 
for the parameters ɑ =0.33, β = 0.78, δ =0.86 and γ=5.5. 
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Figure 6: MEMS system. (a) Time History (x1), (b)  Time History (x2), (c) Frequency Spectrum (x1), (d) Frequency Spectrum 

(x2), (e) Portrait Phase (x1,x2) and, (f) Poincare Map (x1,x2). 
 
Figure 7 shows the dynamics of unstable chaotic behavior of Lyapunov exponents (λ1=+2.6239; λ2=+0.3666), 

(Wolf et al,1985) caused by parametric resonance. 
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Figure 7: Lyapunov Exponents. 
 
 

 
5. CONCLUSION 
 

In this work, a dynamics of the micro electrostatic actuator proposed (Takamatsu, Sugiura, 2005) is investigated 
through numerical simulations using the software Matlab 6.5®. The model of the micro electrostatic actuator is shown 
in Figure 1 and in section 2, the equation of motion and stability are demonstrated and analyzed in accordance with the 
work (Takamatsu, Sugiura, 2005). 

Figure 2 shows stable behavior of the proposed system, the Figure 3 and 4 shows the stability studies carried out 
aiming to find a chaotic behavior in the proposed system, we include parametric excitation, as shown in section 4. 
Figure 7 illustrates the lyapunov exponent for the model with parametric excitation, indicating that this excitement was 
efficient for this purpose. 

Our next objective of our work, numerous design methodologies exist for the control design of nonlinear system. 
These include any of a huge number of linear design techniques (Dahlel, Pearson, 1987; Horowitz, 1991), used in 
conjunction with gain scheduling (Rugh, 1991; Apkarian, Gabinet 1995); nonlinear design methodologies include 
Jacobian linearization, recursive backstepping, feedback linearization, gain scheduling, sliding mode control, and 
adaptative control (Khalil, 1992). Chaotic behavior shown in Figures 6 and 7, motivates us to propose a method of 
stabilization control for the purpose of canceling this chaotic behavior. 

 
6. ACKNOWLEDGEMENTS 
 

The authors thanks Conselho Nacional de Pesquisas (CNPq Proc.n. 301769/2012-5) and Fundação de Amparo a 
Pesquisa do Estado de São Paulo (FAPESP Proc.n. 2012/14174-8) for a financial supports.  
  
7.  REFERENCES 
 
Fieldler-Ferrara, N., Prado, C. P. C., 1995,  Caos: Uma Introdução. São Paulo: Edgar Blücher. 
Guckenheimer, J. and Holmes, P., 1983, Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields, 

Springer-Verlag, New York. 
Halliday, R. Resnick, R., 2008, Fundamentos de Física: Eletromagnetismo. Editora LTC – Livros Técnicos e 

Cientísticos S.A., Rio de Janeiro, Brasil, 8ª Edição. 
Illic, B., Czaplewki, D., Craighead, H.G., Neuzal, P., Campagnolo, C. and Batt, C., 2000, “Mechanical resonant 

immunospecific biological detector”, Applied Physics Letters, 77, p. 450-452. 
Kenny, T., 2001, “Nanometer-scale force sensing with MEMS devices”. IEEE Sensors Journal, 1, p. 148-157. 
Takamatsu, H., Sugiura, T., 2005, “Nonlinear Vibration of electrostatic MEMS under DC and AC Applied Voltage”. In 

Proceendings of the 2005 International Conference on MEMS, NANO and Smart System (ICMENS’05). IEEE. 
(DOI: 10.1109/ICMENS.2005.89) 

Dahlel, M.A., Pearson, J.B. 1987, “l1 optimal feedback controllers for MIMO discrete-time system”. IEEE Trans. on 
Auto. Control. 

Horowitz, I., 1991, Survey of quantitative feedback theory (QDT), International Journal of Control, 53(2), p. 255-291. 
Khalil, H.K., 1992, Nonlinear Systems, New York: Macmillan. 

ISSN 2176-5480

10



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Lyapunov, A.M., 1966, Stability of Motion. Academic Press: New York. 
Wolf, A. , Swift, J. B., Swinney, H. L., Vastano, J. A., 1985, "Determining Lyapunov Exponents from a Time Series" 

Physica D, Vol. 16, p. 285-317. 
Rugh, W.J., 1991,  Analytical framework for gain scheduling, IEEE Control System Magazine, 11(1), p.79-84. 
Rugar, D., Yannoni, C.S., and Sidles, J.A., 1992, “Mechanical detection of magnetic resonance”, Nature, 360, p. 563-

566. 
Apkarian, P., Gabinet, P., 1995, A convex characterization of gain-scheduled Hα controllers. IEEE Trans. on Auto. 

Control, 40(5), p. 853-864. 
Monteiro, L.H.A., 2002, Sistemas dinâmicos. Editora Livraria da Física, São Paulo. 
Gad-El-Hak, M., 2012, The MEMS Handbook, University Of Notre Dame, CRC Press, 2012, p 1332. 
 
 
8. RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 

ISSN 2176-5480

11




