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Abstract. In this contribution, it is proposed a numerical comparative study for an improved damage model, 
based on Continuum Damage Mechanics (CDM), dependent on third invariant and with two calibration 
points for determination of all materials parameters. In the first part, theoretical aspects of the constitutive 
model are presented as well as the implicit numerical integration algorithm, which is based on the operator 
split methodology and implemented in an academic finite element development. In the second part, numerical 
tests are carried out regarding the improved damage model and classical Lemaitre damage model. 
Furthermore, smooth bar, notched bars and shear specimens are used to evaluate the robustness of the 
improved constitutive model. Aspects, as the evolution of the damage parameter, evolution of the equivalent 
plastic strain, the reaction curve, the level of displacement at fracture and ability to predict the correct 
fracture onset are discussed. 
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1. INTRODUCTION 

According to the thermodynamic of internal variable, the behavior of materials can be modeled by 
constitutive equations, taking into account its progressive degradation. These models are based on the 
assumption that the internal damage begins from micro-cracks and can be effectively represented by one or 
more associated internal variables that can represented by a scalar, a vector or a tensor. These variables, called 
damage variables are defined as a measure of defects within a representative volume (RVE). Its development 
should be defined through the constitutive thermodynamic relations, usually represented by a system of 
differential equations in time. Based on Continuum Damage Mechecanics (CDM), several constitutive models 
have been proposed, such as Lemaitre (1985), for damage caused by plastic flow, Chaboche (1984) and 
Murakami & Ohmo (1981), for creep damage, Krajeinovic & Fonseka (1981), for brittle damage, among 
others. 

Despite of continuum advances, many questions remain open, such as modeling problems related to 
failure in metal, resulting from progressive deterioration associated with micro structural deformations. In 
such cases, the development of new and more refined constitutive models deserves careful consideration and, 
thus, the issue continues to be an excellent area of research and development. There are several technological 
processes that would benefit considerably from a better understanding and quantification of the different 
physical phenomena that occur near the rupture of ductile materials. The metal cutting, for example, is a 
technological process used in manufacturing a wide range of products and is currently employed by a large 
number of companies. The importance of this process is underlined by the fact that almost every object we 
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use in our society has one or more machined surfaces. Due to its high use, the effectiveness of this process has 
an impact on the quality and cost of the products obtained. 

Based on the context presented, in this contribution a damage evolution law is proposed  aims at 
detailed study and improvement of the damage model of Lemaitre (1985), with isotropic hardening and 
damage. The work begins with the study of the original model of Lemaitre through conventional specimens 
that result in different levels of triaxiality. Based on the results of this study, we aimed to demonstrate the 
vagueness of this formulation, with respect to the prediction of the correct time (displacement) and local 
potential for initiation of ductile fracture, when the loading condition imposed is presented away from the 
fixed point as calibration parameters of elasto-plastic and evolution of damage variable, such as hardening 
curve, the exponent and denominator of damage. After this preliminary analysis, the objective is to adjust the 
model of Lemaitre, regarding its accuracy and strong dependence of the calibration point. For this, it is 
proposed to create a function called “function denominator of damage”, instead of the denominator of 
damage, which was originally presented as a material constant. 

Regarding this modification, it is also proposed to define a new state potential and dissipation potential 
for the new model, thus maintaining the thermodynamic consistency of the formulation. A new evolution law 
for the damage variable is then deducted as well as other internal variables, such as plastic deformation and 
variable associated with isotropic hardening. A new numerical integration algorithm is suggested for the 
proposed formulation, based on the "split operator" methodology (Simo et. al., 1998), and new numerical 
simulations are made in order to demonstrate the predictive ability of the new formulation, when it comes to 
determining the correct displacement at fracture, as well as the potential site for crack initiation. 

 
 

2. CONSTITUTIVE FORMULATION 

 

2.1. Stress triaxiality and third invariant effects. 

Several factors have been systematically analysed in the study of ductile fracture, nevertheless, there 
are three factors that have gained increased interest: the hydrostatic stress (  , stress triaxiality ( ), and the 
Lode angle     expressed by Equations (1-3) respectively (Brunig et al., 2008; Bai & Wierzbicki, 2008; 
Zadpoor et al., 2009; Tvergaard, 2008; Nahshon et al., 2008). 
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where             is the von Mises equivalent stress,        is the deviatoric stress tensor and   ,    
and    are the components of the deviatoric stress tensor in the principal plane. The Lode angle can also be 
written as a function of the so-called normalized third invariant of the deviatoric stress tensor, as presented 
below 

  
 

 
             

(4) 

where   represents the normalized third invariant, that can be mathematically determined by a ratio between 
the third invariant and the von Mises equivalent stress 
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The term    represents the third invariant, alternatively, defined by Bai et al. (2007) and can be determined as 
following 

   
  

 
    

 
  

  
  

 
        

 
  

    (6) 

where    is the third invariant of the deviatoric stress tensor,  . The Lode angle can also be normalized (    
and this parameter is known as the normalized Lode angle (Bai & Wierzbicki, 2008). 

    
  

 
    (7) 

The range of    is        . According to many authors, the contribution of the effect of the third 
invariant is more severe than the contribution of the stress triaxiality effect in the plastic flow rule (see Bai et 
al, 2008 and Gao, 2011). 

 

2.2. Damage evolution law 

In this section, it will be proposed a new formulation for the Lemaitre damage evolution law, based on 
the creation of a function call “denominator of damage function”, which is dependent on the level of stress 
triaxiality and the normalized third invariant. This function, based on phenomenological observations, replace 
the denominator of damage, in the original Lemaitre damage evolution law, which in turn is a constant, 
calibrated based on experimental results in a smooth specimen subjected to pure tensile. With the creation of 
the denominator of damage function, it is intended to increase the accuracy of Lemaitre's damage model, as 
regards the ability to predict the correct level of displacement at fracture for ductile materials. How was 
discussed previously, the Lemaitre model loses its accuracy with regard the predictive ability, when the 
applied loading condition, is presented away from the chosen point as the calibration condition of material 
parameters. This damage model can then behave premature, anticipating the start of a crack prior to the 
experimentally observed when the applied loading condition has a stress triaxiality level lower than the 
calibration point chosen. However, when the loading condition studied shows a level of stress triaxiality 
higher than the calibration point, the damage model can then predict the fracture onset so late compared to 
experimental observations in the literature. Figure 1 shows the behavior of the Lemaitre’s damage model, 
according to the level of stress triaxiality of the load history applied in comparing to the calibration point. 

 
 
 
 
 
 
 

 
Figure 1. Behavior of Lemaitre´s model regarding the dependence of the calibration point. 

 
 

2.2.1. High stress triaxiality region:          

Regarding the region of high stress triaxiality, it is suggested to use a function dependent on the 
material parameters calibrated traditionally, i.e., by experimental results based on a pure tensile test on a 
smooth cylindrical specimen. Thus, the following expression is then phenomenological suggested as: 

high triaxiality low triaxiality 
level of triaxiality 

       
So late prediction of fracture 

initiation. 
Tensile load 

 

       
 

Calibration 
point 

 

         
Premature prediction of fracture 

initiation. 
Pure shear 
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where       represents the denominator of damage function for the region of high stress triaxiality,   is the 
stress triaxiality and the term   represents the material parameters to be calibrated or represents the 
denominator of damage calibrated by a cylindrical smooth bar specimen         . Equation 8 can be 
rewritten as: 

      
     

    
   (9) 

where       represents the denominator of damage calibrated by a cylindrical smooth bar specimen subjected 
to a pure tensile loading condition. 
 
2.2.2. Low stress triaxiality region:            

For the region of low stress triaxiality, it is suggested to use the pure shear loading condition,      , 
as the second calibration point. Thus, the following phenomenological equation can be defined: 

                 (10) 

where        represents the denominator of damage function for low stress triaxiality region, the parameter   
is the normalized third invariant of the deviatoric stress tensor and the term   represents a material parameter 
to be calibrated, i.e., it is the value of the denominator of damage calibrated by pure shear condition. The 
normalized third invariant is determined by the following expression: 

  
   

       

  
   ( 11) 

where   represents the deviatoric stress tensor and   is the von Mises equivalent stress, which is determined 
by            . Equation 10 can be better represented by: 

                    (12) 

where      represents the denominator of damage calibrated by a pure shear loading condition. 
For that the denominator of damage function can now be applied to wide range of stress triaxiality, 

Equations 9 and 12 need to be coupled, keeping the behavior already observed. The denominator function will 
then be dependent on both stress triaxiality and the normalized third invariant. The following expression 
represents the coupling behavior of the denominator of damage, within the regions of low and high stress 
triaxiality. 

       
     

     
     

    
      

   
(13) 

where        represents the denominator of damage function for wide range of stress triaxiality. The 
denominator of damage function now requires two calibration points for the correct definition. It is necessary 
to determine the optimal value of   for a pure shear loading (    ) and for a pure tensile load, regarding a 
cylindrical smooth bar specimen (     ). This function will take values as follows: under pure shear condition, 
the set of parameters       are both equal to zero. Thus, replacing these values in Equation 12, it is also 
obtained exactly     . On the other hand, under high stress triaxiality condition, the denominator of damage 
will assume values less than or equal to      .  

Table 1 presents a comparison between the values for the denominator obtained by the calibration 
procedure, regarding each loading condition and by Equation 13, for an aluminum alloy 2024-T351. In this 
comparison, it is observed a good agreement between both values. 

 
 

 

ISSN 2176-5480

10510



 
 

Table 1. Assessment between values of S determined by calibration procedure and by the function suggested.  

Specimen     S (calibrated) S  
(by Equation 13) 

Butterfly 0.00 0.0 8.3 8,3 

Smooth bar 0.33 1.0 6.0 6.0 

Notched bar, R=12 mm 0.47 1.0 4.1 4.2 

Notched bar,  R=4 mm 0.74 1.0 2.8 2.7 

 
 
2.2.3. Coupling denominator of damage function and damage evolution law 

The damage evolution law for Lemaitre’s original model is described by Equation. Nevertheless, 
introducing the denominator of damage function       , how was proposed above (Equation 13), replacing 
the denominator of damage  , we have: 

   
  

   
 

  

      
 
 

   (14) 

where        represents the denominator of damage function. The material parameters   is the so called 
exponent of damage, which is in general is equal to unity for most ductile materials. 

Regarding the above modification applied to the Lemaitre’s original damage model and assuming 
again the approach of the existence of a single dissipation potential given by the additive decomposition of the 
damage    and hardening    potentials, the new contribution due to the damage potential will be written as: 

   
      

          
 

  

      
 

   

   (15) 

This expression is obtained assuming the integration procedure of Equation 14 in relation to the 
thermodynamic force associated to the damage,  . Substituting Equation 15 in the additive decomposition of 
the dissipation potential, we have now: 

          
      

          
 

  

      
 

   

    (16) 

with   defined by: 

         
       

     
             (17) 

It can be highlight that the kinematic hardening was neglected. 
 

2.2.4. Definition of the plastic flow rule: associative model 

Regarding an associative plasticity, the so called yield function is then adopted as a flow potential or 
dissipation potential,        In this case, the associative implies that the plastic strain rate is a tensor normal 
to the yield surface, regarding the deviatoric plane. Thus, the evolution equation for the plastic strain   , 
isotropic hardening internal variable   and damage  , are obtained according as follow: 
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(18) 

Thus, the improved Lemaitre’s model, regarding the associative plasticity, isotropic hardening, 
isotropic damage and the denominator of damage function, can be briefly written according Box 1. 

 
 
Box 1. Improved Lemaitre’s model with the denominator of damage function, isotropic hardening and 

damage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
3. NUMERICAL STRATEGY 

In this section, it is presented the numerical strategy used to integrate the improved Lemaitre’s model. 
The numerical model is based on an implicit academic finite element environment and the operator split 
methodology is further used to numerical integrate the improved constitutive formulation (see Simo et al., 
1998), regarding an elastic predictor and a plastic corrector algorithms. The numerical integration algorithm 
for the improved model can be briefly presented in Box 2. 

 

        

            

         
       

     
            

       
 

 

 

        
 

      

   
  

   
 

  

      
 

 

 

   
 

        
 
 

 
                   

       
     

     
     

    
      

 

(i) Additive decomposition of strain: 

(ii) Elastic law with damage coupled: 

(iii) Yield function: 

(iv) Plastic flow rule and evolution equation for   and  : 

 
with: 

and: 
      ;              

 
(v)  Complementary conditions: 

                  . 
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Box 2. Numerical integration algorithm for the improved Lemaitre’s model with isotropic hardening and 
damage, and the denominator of damage function. 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
4. NUMERICAL RESULTS 

 
Regarding the numerical tests, an aluminum alloy 2024-T351 as selected, and a so-called “butterfly 

specimen” to represent loading condition within the range of low stress triaxiality           . 
Furthermore, for high stress triaxiality         , cylindrical notched bars         e          and a 
cylindrical smooth bar specimens were taken. 

 

(i) Elastic trial state: Given the incremental strain    and the values of internal variables at pseudo-
time   : 
    

          
     ;     

         ;     
         

     
            

        ;              
        ;      

       
 

 
      

              

(ii) Plastic admissibility: 
 
If             

        
          

        , then 

             
       (elastic step) go to (v) 

Else go to (iii) 
 

(iii) Return mapping algorithm (plastic step): Solve the system of equations below for   , using 
Newton-Raphson methodology. 

               
  

     
 
      

     
 

 

    

where, 

      
     

     
               

 

       
           

 

  
 

     
 

  
 

      
     

 
    

      
    
        

 
     

     
       

     

    
    

   
           

     

     
      

 

 

 

 

(iv) Update other state variables: 
 
           ;               
                 ;                     

     
    

     
     

     
      ;                 

    
  

 

  
     

 

 
      

         

(v) Exit 
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Figure 2. Geometry for the butterfly specimen (Bai, 2008). 

 

(a)  

 

(b) 

Figure 3. Geometries for an cylindrical notched bars (a)           and (b)          (Bai, 2008). 
 
For the “butterfly specimen” a tridimensional finite element mesh is defined with 2432 elements of 

twenty nodes, followed by 12681 nodes, as presented in Figure 4. In this case, it is used a reduced integration 
strategy with nine Gauss points. 

 

 
Figure 4. Tri-dimensional finite element mesh for the butterfly specimen. 
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For the cylindrical bars specimens, both of them were discretized with finite elements of eight nodes. 
A total of 1800 elements were used, followed by 5581 nodes. The lengths of gage used was         for the 
aluminum alloy.. Due to the symmetry of the problems, only 1/4 of the specimens are simulated, regarding bi-
dimensional problems.  

   
(a) (b) (c) 

Figure 5. Finite elements meshes for cylindrical bars specimens, regarding Al 2024-T351. 
 
Assuming the calibration procedure performed by Malcher et al (2013), the following material 

parameters are then determined as presented in Table 2. 
 

Table 2. Material parameters for aluminum alloy 2024-T351. 
Description Symbol Value 

Modulus of elasticity   72.400[MPa] 
Poisson’s ratio   0.33 

Initial yield stress    
 352.00 [MPa] 

Hardening curve                            
Critical damage    0.26 

Exponent of damage   1 
Denominator of damage 

 (high triaxiality)       6 [MPa] 

Denominator of damage 
(low triaxiality)       8.25 [MPa] 

 
As a first analysis, are presented by Figure 6, the reaction curves determined numerically using the 

new formulation, and the original model, and experimentally, taken hand the butterfly specimen, subject to 
pure shear (Figure 6a), the cylindrical smooth bar specimen (Figure 6b) and cylindrical notched bars 
specimens         (Figure 6c) and        (Figure 6d), both subjected to pure tension. It can be 
observed with the introduction of the denominator of damage function, that the displacement at fracture, 
determined numerically by the new formulation, is now closer to the experimentally observed, considering all 
the specimens evaluated here. Regarding the original Lemaitre’s model, for loading conditions resulting in 
high level of stress triaxiality         , the model predicts the fracture onset so late (cylindrical notched 
bars specimens). Furthermore, for loading conditions within the range of low stress triaxiality, as pure 
shear      , the model predicts the fracture onset prematurely. However, with the new formulation, the 
predictive ability becomes more uniform, so that the model is now less sensitive to relation between the 
conditions of use versus the calibration condition. 

Table 3 presents the displacement values for experimental tests and numerical simulations. It appears 
that the difference between the numerical and experimental displacement, considering the original Lemaitre 
model is approximately 17%, 27% and 68%, respectively, for the butterfly specimen (pure shear), notched bar 
        (pure tensile) and notched bar        (pure tensile). With the new formulation and reduced 
dependence on the calibration condition, in both cases the difference between numerical results and the 
experimentally observed values is reduced to approximately 1%. 
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Figure 6. Reaction curves for aluminum alloy 2024-T351. 
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Table 3. Assessment between experimental and numerical displacement at fracture (aluminum  2025-T351) 

Specimen   
Displacement at fracture (mm) 

Experimental data 
Model 

original Improved 
Butterfly                     

Smooth bar                     

Notched bar                             

Notched bar                            

 

 
5. CONCLUSIONS 

Thus, the improved Lemaitre’s model can then be calibrated taken hand two points and used to 
determine the correct displacement at fracture regarding wide range of stress triaxiality. The improved model 
demonstrated the same high performance, both in regions of low and in high level of stress triaxialities, 
independent of the material used for analyze. 
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